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Abstract

We propose a method to teach an automated
agent to learn how to search for multi-hop
paths of relations between entities in an open
domain. The method learns a policy for direct-
ing existing information retrieval and machine
reading resources to focus on relevant regions
of a corpus. The approach formulates the learn-
ing problem as a Markov decision process with
a state representation that encodes the dynam-
ics of the search process and a reward struc-
ture that minimizes the number of documents
that must be processed while still finding multi-
hop paths. We implement the method in an
actor-critic reinforcement learning algorithm
and evaluate it on a dataset of search problems
derived from a subset of English Wikipedia.
The algorithm finds a family of policies that
succeeds in extracting the desired information
while processing fewer documents compared
to several baseline heuristic algorithms.

1 Introduction

The sheer size of public corpora such as Wikipedia1

or large paper repositories like arXiv2 and PubMed
Central3 poses an enormous challenge to automat-
ing effective search for relevant information. This
problem is compounded when the underlying infor-
mation needs require multi-hop connections, e.g.,
searching for biological mechanisms that connect
two proteins (Cohen, 2015) or searching for expla-
nations that require complex reasoning by under-
standing text supported by different documents in
QA systems (Welbl et al., 2018; Yang et al., 2018).

In a naive approach, an automated information
extraction agent could process all the documents
in a corpus, searching for the indirect connections
that satisfy a multi-hop information need. However,
this quickly becomes prohibitively expensive as the
corpus size increases. Further, the documents may

1https://www.wikipedia.org/
2http://arxiv.org/
3https://www.ncbi.nlm.nih.gov/pmc/

also be behind a paywall, adding an additional eco-
nomic cost to accessing information. Thus, the
naive exhaustive reading approach is simply not
feasible for most large corpora scenarios. Instead,
we need to incorporate the kind of iterative focused
reading that humans are capable of. When peo-
ple search for information, they use background
knowledge, based in part on what they have just
read, to narrow down the search space while se-
lectively committing time and other resources to
carefully reading documents that appear relevant.
This process may be repeated multiple times until
the information need is satisfied.

We propose a methodology that uses reinforce-
ment learning (RL) to teach an automated agent
how to direct a search process, using existing in-
formation retrieval and machine learning compo-
nents selectively, focusing on the relevant parts of
the corpus in order to minimize the expenditure of
computational resources and access costs.

The contributions of our work are the following:

1. A reinforcement learning framework to teach
an automated agent how to direct a multi-hop
search process that selectively allocates ma-
chine reading resources in an open-domain
corpus.

2. A set of domain-agnostic state representation
features that enable the reinforcement learn-
ing method to learn a policy that improves
the chances of finding the desired information
while processing fewer documents compared
to strong baselines.

3. A new dataset of open-domain multi-
hop search problems derived from En-
glish Wikipedia contained in the WikiHop
dataset 4 (Welbl et al., 2018). Using this
dataset, we show that our RL approach is able

4http://qangaroo.cs.ucl.ac.uk

https://www.wikipedia.org/
http://arxiv.org/
https://www.ncbi.nlm.nih.gov/pmc/
http://qangaroo.cs.ucl.ac.uk


to derive policies that find the desired informa-
tion more frequently and by processing fewer
documents than several heuristic baselines.

2 Related Work

Modern machine reading technology enables the
extraction of structured information from natural
language data. Named-entity recognition (Tjong
Kim Sang and De Meulder, 2003) systems detect
and label specific classes of concepts from text,
both in the general domain (Manning et al., 2014)
and for specific domains (Neumann et al., 2019).
Relation extraction systems extract interactions be-
tween different concepts in open-domain (DBL,
2018, 2017, 2008) and domain-specific scenar-
ios (Jin-Dong et al., 2019; Demner-Fushman et al.,
2019; Cohen et al., 2011).

Reinforcement learning has been successfully
deployed for a variety of natural language process-
ing (NLP) tasks. (Clark and Manning, 2016) pro-
posed a policy-gradient method to resolve the cor-
rect coreference chains for the task of coreference
resolution. (Li et al., 2017) used reinforcement
learning to train an end-to-end task-completion
dialogue system. For the task of machine trans-
lation, (He et al., 2016) formulated the task as a
dual-learning game in which two agents teach each
other without the need of human labelers using
policy-gradient algorithms.

Reinforcement learning has also been specifi-
cally applied to improving search and machine
reading. In learning how to search, (Kanani and
McCallum, 2012) proposed a methodology for the
task of slot-filling based on temporal-difference
q-learning that uses domain specific state repre-
sentation features to select actions in a resource-
constrained scenario. (Noriega-Atala et al., 2017)
successfully applied RL to finding relevant bio-
chemical interactions in a large corpus by focus-
ing the allocation of machine reading resources
towards the most promising documents. Similarly,
(Wang et al., 2019) explore the use of deep neu-
ral networks and deep RL to simulate the search
behavior of a researcher, also in the biomedical
domain.

3 Learning to Search

We propose a methodology to teach an automated
agent how to selectively retrieve and read docu-
ments in an iterative fashion in order to efficiently
find multi-hop connections between a pair of con-

cepts (or entities). Each search step focuses on a
restricted set of documents that are hypothesized
to be more relevant for finding a connection be-
tween the two target concepts. The focus set is
retrieved and processed and if a path connecting
the concepts is found, the search terminates. Oth-
erwise, a new set of focus documents is identified
based on what has been learned so far during the
search. The process is repeated iteratively until the
desired information is found or a number of itera-
tions is exceeded. Our method is general as it does
not directly rely on any supervised domain specific
semantics.

During the search, the agent iteratively con-
structs a knowledge graph (KG) that represents the
relations between concepts found so far through
machine reading. In each iteration, the algorithm
formulates a document retrieval query based on the
current state of the knowledge graph, which is then
executed by an information retrieval (IR) compo-
nent. The IR component contains data structures
to query the corpus, for example using an inverted
index. The construction of these data structures
usually only requires shallow processing, such as
tokenization and stemming, and not a full-fledged
NLP pipeline. Any documents returned from exe-
cuting the query are processed by an information
extraction (IE) component that performs named en-
tity recognition and relation extraction. The KG
is expanded by adding newly identified entities as
new nodes and previously unseen relations as new
edges. The overall goal of the method is to focus on
the documents that appear to be most likely to con-
tain a path between the target concepts, all while
processing as few documents as possible.

(Noriega-Atala et al., 2017) formalized this iter-
ative search process as a family of focused reading
algorithms, shown in Algorithm 1:

Algorithm 1 Focused reading algorithm
1: procedure FOCUSEDREADING(E1, E2)
2: KG← {{E1, E2}, ∅}
3: repeat
4: Q← BUILDQUERY(KG)
5: (V,E)← RETRIEVAL+EXTRACTION(Q)
6: EXPAND(V,E,KG)
7: until ISCONNECTED(E1, E2) OR HASTIMEDOUT

8: end procedure

The algorithm starts with the KG representing
only the endpoints of the search: the named enti-
ties E1 and E2. The algorithm then initiates the
search loop. The first step in the loop analyzes



the knowledge graph and generates an information
retrieval query, Q. As we will describe shortly, the
current state of the KG is used to parameterize and
constrain the scope of Q, focusing it on returning a
limited subset of documents that are hypothesized
to be most relevant. After retrieval, the documents
are processed by the IE component. Any entities
not previously found in the KG are placed in the
new entity set V , and similarly any new relations
linking entities are placed in the new relation set,
E. V and E are incorporated into the KG and the
algorithm then searches the updated KG for any
new possible paths connecting E1 and E2. If a
path exists, it is returned as a candidate explana-
tion of how E1 and E2 are related. Otherwise, if
no such path exists, the query formulation process
(using the updated KG) followed by IR and IE, is
repeated until a path is found or the process times
out.

This framework can answer multi-hop search
queries for which the relationships along a connect-
ing path come from different documents. For exam-
ple, this process may discover that Valley of Mexico
is connected to the Aztecs because the Aztecs were
a pre-columbian civilization (found in one docu-
ment), which, in turn, was located in the Valley of
Mexico (found in another document).

In the following subsections, we formulate
focused reading as a Markov decision process
(MDP).

3.1 Constructing Query Actions

Template # Params Constraints

Conjunction Two: (A, B) Contains A and B
Singleton One: (E) Contains E
Disjunction Two: (A, B) Contains A or B

Table 1: Query templates

In the focused reading MDP, actions are com-
prised of information retrieval queries. Actions are
constructed from a set of three query templates,
listed in Table 1. Each template is parameterized
by one or two arguments representing the entities
that are the subject of the query. The template
type then incorporates these entities into the set of
constraints that must be satisfied by a document
in order to be retrieved. The different query tem-
plates are intuitively designed to give the agent the
choice of either exploring the corpus by perform-
ing a broader search through the more permissive

disjunctive query (documents are retrieved if either
of the entities are present), or instead exploiting
particular regions of the corpus through the more
restrictive conjunctive query (the documents must
contain both entities).

Because conjunctive queries return documents
with the text of both entities, they are more likely to
identify relations connecting the entities. However,
there is also an increased risk that such queries will
end up not finding any satisfying documents, es-
pecially when the entities are not closely related,
resulting in waisting one iteration in the search pro-
cess. On the other hand, disjunctive queries are
designed to return a larger set of documents, which,
reduce the likelihood of returning an empty set. But
they introduce the risk of processing more poten-
tially irrelevant documents, and potentially intro-
ducing more irrelevant entities. Singleton queries
represent a compromise between conjunction and
disjunction. They are designed to expand the set
of existing queries to the knowledge graph, which
may in turn be along paths that connect the target
entities, but retrieving documents related to just
one entity, rather than two.

Every entity or pair of entities in the current
knowledge graph is eligible to serve as a parameter
in a query template. The challenge is to choose
which entities paired with query template type are
more likely to retrieve documents containing can-
didate paths, using only the domain-agnostic infor-
mation present in the KG.

As the search process proceeds, the number of
entities in the knowledge graph grows, in turn
increasing the number of possible query actions
that can be constructed. RL quickly becomes in-
tractable as the state and action space grows. We
therefore perform a beam search to fix the cardinal-
ity of the action space to a constant size. In partic-
ular, we use cosine similarity (for entity pairs) and
average tf-idf scores (for single entities) to rank
the entities that might participate in constructing
query actions. The agent then chooses among the
top n entities/pairs for each query template, thus
bounding the total number of actions available to
the agent to 3n different queries at each step.

We rank candidate entity pairs that might par-
ticipate in query templates involving two entities
by computing the cosine similarity of the vector
representations of the entities. We use the natural
language expression representation of the named
entities to construct a continuous vector represen-



tation. The vector representation of each entity is
built by averaging the word embedding vectors5 of
the words in the text of the named entity descrip-
tion. This similarity works as a proxy indicator of
how related those entities are, under the intuition
that entities that have similar embeddings are more
likely to participate in relations.

For singleton entity queries, we use the average
tf-idf score of the entity’s natural language descrip-
tion for ranking. The tf-idf score of an entity is
derived from averaging the tf-idf score of the in-
dividual terms in the entity’s natural language de-
scription. Each term’s frequency value is based on
the complete corpus. Tf-idf scores are often used
as a proxy measure of term importance (the term
occurs selectively with greater frequency within
some documents), so here the intuition is that en-
tities with higher tf-idf scores may be associated
with higher recall in the corpus.

Finally, there is an additional non-query action
that is available in every step of the search: early
stop. If the agent choses to stop early, the search
process transitions to a final, unsuccessful state.
This deprives the agent from successfully finding a
path, but avoids incurring further cost of processing
more documents in a possibly unfruitful search.

3.2 State Representation Features
At each step during search, the focused reading
agent will select just one action to execute (a query
action or early stop) based on the current search
state. The agent makes this decision using a model
that estimates for each action the expected long-
term reward that can be achieved by taking that
action in the current state. Here we describe the
collection of features used to represent the current
state, provided as input to the model.

Table 2 provides a summary of the features in-
cluded in the state representation. We group them
into four categories.

• Search state features: Information about the
current state of the search process including:
the number of documents that have been pro-
cessed so far; how long has the search been
running (expressed in iterations); and the size
of the knowledge graph.

• Endpoints of the search: E1 and E2 represent
the original target concepts that we are trying

5We used the pretrained GloVe model provided by spaCy
at https://spacy.io/models/en#en_core_web_
lg

Category Feature

Search state

Iteration number
Doc set size
# of vertices in KG
# of edges

Endpoints Embedding of E1
Embedding of E2

Query Cosine sim. or avg tf-idf score
# of new documents to add

Topic Modeling ∆ Entropy of queries
KL Divergence of query

Table 2: State representation features

to find a path between. The identity of the
endpoints determines the starting point of the
search and conditions the theme of the content
sought during the search. This information is
provided to the model using the vector embed-
ding representations of E1 and E2.

• Query features: We include in the state repre-
sentation features the score with which each
of the 3n queries in the action space is ranked.
This includes the cosine similarity for conjunc-
tion and disjunction queries and tf-idf score
for singleton queries. The intuition is that
the score may be correlated with the expected
long-term reward. For each query action, we
will also see the identities of which documents
will be retrieved. This allows us to count how
many documents will be retrieved that have
not already contributed to the KG, and this is
included in the state representation for each
action.

• Topic modeling features: Finally, we would
like to incorporate some indication of what in-
formation is contained in the documents that
might be retrieved, and how it relates to the
current entities within the KG. As a proxy
for this information, we model the topics in
the potentially retrieved documents, by peek-
ing into the IR component to see the identity
of documents that would be returned by the
queries in the action space, and compare them
to the topics represented in the KG using two
numerical scores: (a) an approximation of
how broad or specific the topics are in the set
of documents that would be returned by the
query, and (b) an estimate of how the knowl-
edge graph’s topic distribution would change
if the query is selected as the next action.

https://spacy.io/models/en#en_core_web_lg
https://spacy.io/models/en#en_core_web_lg


3.3 Topic Modeling Features

Topic modeling features can be useful for staying
on topic throughout the search, avoiding drift into
potentially irrelevant content. Consider the follow-
ing example: A user wants to know how the Red
Sox and the Golden State Warriors are related by
searching Wikipedia. While the two entities cover
different sports in different regions of the United
States, it is more likely that the connection will oc-
cur in a document about sports, e.g., they are both
covered by the ESPN TV station.

We use Latent Dirichlet Allocation (Blei et al.,
2003) (LDA) to provide the agent the ability to
exploit topic information available in the corpus.
LDA is unsupervised and requires only shallow
processing of the corpus, namely, tokenizing and
optionally stemming. This is essentially the same
information required for constructing an inverted
index for IR, so can be computed along with the IR
component used in the focused reading system.

LDA produces a topic distribution for each doc-
ument. We then aggregate the set of documents
by summing the topic frequencies across docu-
ments and renormalizing. The topic distribution of
the KG is then the aggregation of the topic distri-
butions of the documents processed so far in the
search process. The topic distribution of a query
is the aggregation of the topic distributions of the
unseen documents returned by the query.

We consider two statistics for relating topic
distributions: topic entropy and Kullback-Leibler
(KL) divergence.

Intuitively, the entropy of a topic distribution is
an estimate of how specialized a document is, that
is, how much it focuses on a particular set of topics.
For example, a document that only talks about a
specific sport will generally have a topic distribu-
tion where the mass is concentrated only on the
particular topics of that sport, and therefore have a
lower entropy than another document that discusses
sports and business. Document sets with overall
higher entropy are more likely to introduce infor-
mation about more topics to the knowledge graph,
and therefore produce more opportunities for new
links between a broader set of entities. Lower en-
tropy queries focus on a narrower set of topics, and
thus, may introduce links between a restricted set
of entities. The difference in entropy expresses this
intuition in relative terms. We introduce a feature,
∆ Entropy, as the difference in entropy between
documents retrieved by a candidate action and the

documents the action retrieved in the previous step.
Positive values indicate that the candidate query
will generally expand the topics compared to those
fetched the last step while negative values indicate
more restricted topic focus.

∆ Entropy measures how concentrated the mass
is, but it does not tell us how the distributions
are different. Two document sets may have com-
pletely different topic distributions, yet have the
same or similar entropy. Kullback-Leibler (KL) di-
vergence (Kullback and Leibler, 1951), also known
as relative entropy, helps measure how different
two distributions are with respect to each other,
even if they have the same absolute entropy. To
capture this information, we compute the KL di-
vergence between the topic distribution in the new
documents (retrieved by the new query) and the
topic distribution of the knowledge graph. This
estimates how different the information in the new
query is relative to what has already been retrieved.

3.4 Reward Function Structure
The overall goal of the focused reading learning
processes is to identify a policy that efficiently finds
paths of relations between the target entities while
minimizing the number of documents that must
be processed by the IE component. To achieve
this, we want the reward structure of the MDP
to incorporate the tradeoff between the number
of documents that have to be read (the reading
cost) and whether the agent can successfully find a
path between the entities. Equation 1 describes the
reward function, where st represents the current
state and at represents the action executed in that
state.

r(st, at) =


S if st+1 is succesful sate
−c×m if m > 0

−e if m = 0

(1)

A positive reward S (for “success”) is given when
executing at results in a transition to a state whose
knowledge graph contains a path connecting the
target entities. Otherwise, the search is not yet com-
plete and the a cost is incurred for processing m
documents with machine reading on step t. The
cost is adjusted by a hyper parameter c that controls
the relative expense of processing a single docu-
ment. Note that there may be actions that return an
empty document set, incurring no cost from read-
ing, but still not making progress in the search. To
discourage the agent from choosing such actions,
the hyperparameter e controls the cost of executing



an unfruitful action that returns no new informa-
tion. (Specific parameter values used in this work
are presented in Table 4 of Section 5.)

4 Evaluation and Discussion

To evaluate the focused reading learning method,
we introduce a novel dataset derived from the En-
glish version of Wikipedia. Our dataset consist
of a set of 369 multi-hop search problems, where
a search problem is consists of a pair of entities
to be connected by a path of relations, potentially
connecting to other entities along the path.

The foundation of the dataset is a subset of 6,880
Wikipedia articles from the WikiHop (Welbl et al.,
2018) corpus. We used Wikification (Ratinov et al.,
2011; Cheng and Roth, 2013) to extract named
entities from these documents and normalize them
to the title of a corresponding Wikipedia article.
Wikification does not perform relation extraction,
so we lack gold-standard relations. To overcome
this limitation, in this paper we induce a relation
between entities that co-occur within a window of
three sentences. Every relation extracted this way
can be traced back to at least one document in the
corpus.

We create a gold-standard knowledge graph us-
ing the induced entities and relations, and we sam-
ple pairs of entities connected by paths to create
search problems for the dataset. Table 3 contains
a break-down of the number of elements in each
subset of the dataset.

Element Size

Corpus 6880 articles

Search Problems
Training 230 problems
Development 500 problems
Testing 670 problems

Total 1400 problems

Table 3: Multi-hop search dataset details.

We train an LDA model6 and constructed an
information retrieval inverted index over the collec-
tion of documents.7

We used the Advantage Actor Critic algo-
rithm (Mnih et al., 2016) (A2C) to implement our

6We used the LDA implementation provided by gensim
https://radimrehurek.com/gensim_3.8.3/.

7Code and dataset files are found at https://ml4ai.
github.io/OpenDomainFR/

reinforcement learning focused reading method.8

A2C is an actor-critic method and we use a single
neural network architecture to model the action pol-
icy (actor) as well as the state value function (critic).
We use a single neural network architecture to im-
plement the A2C actor-critic model. The archi-
tecture consists of a fully-connected feed-forward
neural network with four layers and two output
heads. The first output head represents the approxi-
mation of the action policy (the actor) as a soft-max
activation layer whose size is the cardinality of the
action space. This approximates the probability
distribution of the actions given the current state.
The second head approximates the state value, as
a single neuron with a linear activation. The state
value estimates the expected long-term reward of
using the estimated action distribution of the first
head in the current state. Altogether the model
consists of approximately 3.79 million parameters.

Table 4 lists the hyper-parameter values used in
our experiments. 9

Hyper-parameter Value

Environment
# entities per query template 15
Maximum # of steps 10

Reward Function
Successful outcome S 1000
Document processing cost c 10
Empty query cost e 100

Training
Mini-batch size 100
# Iterations 2000

Table 4: Hyper-parameter values

We performed an ablation analysis on the de-
velopment dataset to find the best configuration of
features.

The development dataset contains five hundred
search problems. The set of endpoints of the search
problems does not overlap with those of the training
and validation datasets. This is enforced to avoid
any accidental leak of training information.

Table 5 contains the results of the ablation ex-
periments. All the search problems were repeated
five times with different random seeds. The key
columns of the table are defined as follows. Success
Rate represents the percentage of problems in the
test set for which the agent connected the endpoints.

8Implemented using the rlpyt library hosted at https:
//github.com/astooke/rlpyt.

9Hyper-parameter values were determined through manual
tunning.

https://radimrehurek.com/gensim_3.8.3/
https://ml4ai.github.io/OpenDomainFR/
https://ml4ai.github.io/OpenDomainFR/
https://github.com/astooke/rlpyt
https://github.com/astooke/rlpyt


Average Steps
Success Rate Processed Documents Documents per Success Overall Successes Failures

Baselines

Random 25.04 (0.014) 56,187.8 (3,197.6) 449.83 (34.34) 8.41 (0.06) 3.66 (0.25) 10 (0)
Conditional 23.92 (0.008) 49,609.8 (4,215.11) 415.03 (36.01) 8.51 (0.06) 3.78 (0.07) 10 (0)

Cascade 32.84 (0.01) 62,058.2 (3,686.57) 378.15 (23.87) 7.42 (0.05) 2.93 (0.19) 9.61 (0.06)

All Features

Dropout 0.2 36 (0.007)* 58,552.2 (719.67)* 325.41 (8.43)* 6.56 (0.05) 2.22 (0.06) 9.01 (0.04)
Dropout 0.5 36.64 (0.004)* 100,869 (4,121) 550.76 (26.2) 7 (0.04) 2.37 (0.08) 9.67 (0.06)

No Embs 26.3 (0.008) 39,433 (1,678.2)* 428.82 (19.51) 6.52 (0.03) 2.37 (0.08) 7.74 (0.07)

No Query Features

Dropout 0.2 33.68 (0.003) 42,022.2 (2,071.89)* 249.57 (13.02)* 4.56 (0.05) 2.02 (0.03) 5.84 (0.08)
Dropout 0.5 36.48 (0.003)* 62,126.6 (1,900.75) 340.62 (10.79)* 5.95 (0.06) 2.28 (0.03) 8.06 (0.09)

No Embs 35.6 (0.005)* 58,025.8 (1,085.72)* 325.99 (4.26)* 6.37 (0.07) 2.2 (0.07) 8.68 (0.12)

No Search Features

Dropout 0.2 35.92 (0.002)* 55,723 (1,437.01)* 310.27 (8.13)* 6.42 (0.04) 2.15 (0.03) 8.82 (0.07)
Dropout 0.5 35.32 (0.003)* 53,227.4 (1,429.88)* 301.42 (8.77)* 5.41 (0.07) 2.09 (0.02) 7.22 (0.11)

No Embs 37.16 (0.004)* 97,612.2 (4,550.54) 525.48 (26.72) 6.92 (0) 2.44 (0.08) 9.56 (0.01)

No Topic Features

Dropout 0.2 35.56 (0.004)* 51,757.4 (1,510.95)* 291.11 (8.36)* 5.92 (0.02) 2.15 (0.07) 8 (0.05)
Dropout 0.5 35.72 (0.007)* 55,637 (1,456.53)* 311.58 (8.74)* 5.56 (0.05) 2.13 (0.06) 7.46 (0.06)

No Embs 28.52 (0.004) 50,634.6 (2,060.88)* 355.05 (12.1) 6.74 (0.06) 3.5 (0.04) 8.03 (0.1)

Table 5: Feature sets ablation results. * denotes the difference w.r.t. the cascade baseline is statistically significant.

Processed Docs provides the number of documents
processed in all the search problems of the test
set. Docs per Success is a summary the other two
columns: it contains the number of documents pro-
cessed divided by the number of successes. This
ratio is an aggregate statistic useful for comparing
the performance between different policies. We
report the sample averages and their standard de-
viations in parentheses. For example, the Success
Rate column displays the average and standard de-
viation of five success rate calculations over five
hundred search problems. The Processed Docu-
ments column displays the average and standard
deviation of the cumulative count of documents
processed in the search problems, and so forth.

We implement three baseline policies that were
not derived using RL:

• Random: Uniformly randomly selects a query
from all possible queries constructed from eli-
gible combinations of entities assigned to the
query templates.

• Conditional Random: Uniformly randomly
selects a query template, conjunction, disjunc-
tion and singleton and then choses the uni-
formly randomly selects the entities to param-

eterize the template.

• Cascade: Uniformly randomly samples a pair
of entities and executes a conjunction query. If
the result set does not contain any documents,
then the agent selects a disjunction query with
the same entities.

For consistency, each baseline was also evalu-
ated with five different random seeds over the test-
ing set. The top part of Table 5 shows the results
of the baseline policies.

To test for statistical significance, we performed
a non-parametric bootstrap resampling test with
ten thousand samples for the the following metrics:
success rate, processed documents and documents
per success. For each metric, we calculated the dif-
ference between the result of the cascade baseline
and the result of each of the reinforcement learning
(RL) policies. If p ≤ 0.05 of the difference being
in favor of the reinforcement learning policy, the
quantity is starred in the table.

In terms of success rate, most of the reinforce-
ment learning models perform better than the cas-
cade baseline. The notable exceptions are two fea-
ture configurations that do not use endpoint em-
beddings. These configurations are the one that



Average Steps
Success Rate Processed Documents Documents per Success Overall Successes Failures

Baseline

Cascade 36.52 (0.008) 83,252.4 (2,538.11) 339.39 (13.01) 7.18 (0.06) 2.81 (0.05) 9.69 (0.04)

No Topic Features

Dropout 0.2 39.02 (0.007)* 79,737.2 (1,664.65) 304.22 (10.06)* 6.28 (0.04) 2.16 (0.08) 8.91 (0.03)

All Features

Dropout 0.2 39.49 (0.003)* 85,637.8 (1,751.95) 322.71 (7.99) 6.34 (0.04) 2.16 (0.03) 9.07 (0.06)

Table 6: Results of the best model in the testing dataset. Quantities are averages over five runs with different random
seeds and standard deviations are shown in parentheses. * denotes the difference w.r.t. the cascade baseline is
statistically significant.

considers all feature classes and the one that does
not consider topic features.

Excluding query features from training produces
models that process fewer documents per success
with or without endpoint embeddings.

Excluding search features produced in average
models with higher success rate, with or without
embeddings, but does so while processing more
documents compared to other configurations.

The configurations that exclude query features
produced models with the best numbers of docu-
ments per success. When the topic features are
excluded, a similar result is achieved, but the num-
ber of documents per success of model that does
not use endpoint embeddings is not statistically sig-
nificantly lower than that of the cascade baseline.

Nonetheless the model that has the best balance
between success rate and documents per success
is the one that excludes topic features and trains
with a dropout coefficient of 0.2 on the endpoint
embeddings. We use this model to evaluate the
validation dataset.

Table 6 displays the results of the cascade
baseline, which shows the strongest performance
among the baseline policies, and the chosen rein-
forcement learning model on the validation dataset.
The validation dataset contains 650 search prob-
lems and the set of endpoints of its search problems
is disjoint from the other datasets’ for the same rea-
son, to avoid leaking any training or development
signal into the validation dataset. We did the same
non-parametric bootstrap test for statistical signifi-
cance. The reinforcement learning policy achieves
approximately 2.5% higher average success rate on
the testing dataset that the cascade baseline policy.
While it also processes fewer documents in aver-
age, the difference is not statistically significant,

but when considering the number of documents
per success, the result is indeed significant, requir-
ing approximately thirty five documents in average
than cascade.

5 Conclusions

We proposed a focused reading methodology to au-
tomatically learn how to direct search in large cor-
pora while iteratively building a knowledge base.
The knowledge base is modeled as a graph, which
in turn is used to focus the search toward doc-
uments that appear relevant. Our methodology
complements existing information retrieval and
machine tools. We evaluated focused reading on
a set of search problems extracted from English
Wikipedia and demonstrated that reinforcement
learning with a state representation based on fea-
tures about dynamics of the search process and the
properties of the corpus is more effective and effi-
cient than heuristic baselines. In this methodology,
inference in a knowledge graph acquired during the
search process is agnostic of the semantics of the
concepts and their relations. Their quality depends
on the machine reading components used to extract
them.

In future work, we plan to explore approaches for
incorporating the semantics of the relations along
the multi-hop paths that connect the target entities.
Crucially, this includes incorporating additional
constraints based on topic context. Providing con-
text to a search problem could prove useful to bet-
ter focus the search process and to improve the
accuracy of inference. We also plan to adapt the
focused reading methodology to handle other class
of search problems, e.g., slot filling tasks where the
endpoints are underspecified.
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