
Table Retrieval May Not Necessitate Table-specific Model Design

Zhiruo Wang, Zhengbao Jiang, Eric Nyberg, Graham Neubig
Language Technologies Institute, Carnegie Mellon University
{zhiruow,zhengbaj,ehn,gneubig}@cs.cmu.edu

Abstract
Tables are an important form of structured data
for both human and machine readers alike,
providing answers to questions that cannot,
or cannot easily, be found in texts. Recent
work has designed special models and training
paradigms for table-related tasks such as table-
based question answering and table retrieval.
Though effective, they add complexity in both
modeling and data acquisition compared to
generic text solutions and obscure which el-
ements are truly beneficial. In this work, we
focus on the task of table retrieval, and ask: “is
table-specific model design necessary for ta-
ble retrieval, or can a simpler text-based model
be effectively used to achieve a similar result?”
First, we perform an analysis on a table-based
portion of the Natural Questions dataset (NQ-
table), and find that structure plays a negligible
role in more than 70% of the cases. Based
on this, we experiment with a general Dense
Passage Retriever (DPR) based on text and a
specialized Dense Table Retriever (DTR) that
uses table-specific model designs. We find that
DPR performs well without any table-specific
design and training, and even achieves supe-
rior results compared to DTR when fine-tuned
on properly linearized tables. We then experi-
ment with three modules to explicitly encode
table structures, namely auxiliary row/column
embeddings, hard attention masks, and soft
relation-based attention biases. However, none
of these yielded significant improvements, sug-
gesting that table-specific model design may
not be necessary for table retrieval.1

1 Introduction

Tables are a valuable form of data that organize
information in a structured way for easy storage,
browsing, and retrieval (Cafarella et al., 2008;
Jauhar et al., 2016; Zhang and Balog, 2020). They
often contain data that is organized in a more acces-
sible manner than in unstructured texts, or even not

1The code and data are available at https://github.com/
zorazrw/nqt-retrieval

Question: 
Who is the highest paid baseball player in the major leagues?

Table:

Figure 1: A correct table can be identified by matching
key phrases in question to those in the table title and
header cells.

available in text at all (Chen et al., 2020a). There-
fore, tables are widely used in question answering
(QA) (Pasupat and Liang, 2015; Zhong et al., 2017;
Yu et al., 2018). For open-domain QA, the abil-
ity to retrieve relevant tables with target answers
is crucial to the performance of end-to-end QA
systems (Herzig et al., 2021). For example, in
the Natural Questions (Kwiatkowski et al., 2019)
dataset, 13.2% of the answerable questions can be
addressed by tables and 74.4% by texts.

Because tables are intuitively different from
unstructured text, most previous works consider
text-based methods to be functionally incapable
of processing tables effectively and create special-
purpose models with table-specific architectures
and training methods, adding auxiliary structure-
indicative parameters (Herzig et al., 2020; Wang
et al., 2021b; Deng et al., 2020; Yang et al., 2022),
enforcing structure-aware attention (Yin et al.,
2020; Wang et al., 2021b; Zayats et al., 2021), and
table-oriented pre-training objectives (Deng et al.,
2020; Yin et al., 2020; Wang et al., 2021b; Liu
et al., 2021; Yu et al., 2020). Though effective in
many tasks, these special-purpose models are more
complex than generic solutions for textual encod-

https://github.com/zorazrw/nqt-retrieval
https://github.com/zorazrw/nqt-retrieval


ing, and must be intentionally built for and trained
on tabular data. In addition, because these methods
modify both the model design and the training data,
it is difficult to measure the respective contributions
of each of these elements.

Particularly for question-based table retrieval,
we hypothesize that content matching is paramount,
and little, if any, structural understanding may be re-
quired. For example, given a question “Who is the
highest paid baseball player in the major leagues?”
in Figure 1, a correct table can be retrieved by sim-
ply identifying the phrase “highest-paid”, “major
league”, and “baseball player” in the table title,
and matching the semantic type of “Who” to the
“Name” header. Hence, any benefit demonstrated
by table-based models may well come from good
training data while table-specific model design has
a limited influence.

In this paper, we specifically ask: “Does table
retrieval require table-specific model design, or can
properly trained generic text retrievers be exploited
to achieve similar performance with less added
complexity?” Our work centers around the table-
based open-domain QA dataset, NQ-table (Herzig
et al., 2021), a subset of the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019) where
each question can be answered by part(s) of a
Wikipedia table. We start with manual analysis
of 100 random samples from NQ-table and ob-
serve that consideration of table structure seems
largely unnecessary in over 70% of the cases, while
the remaining 30% of cases only require simple
structure understanding such as row/column align-
ment without structure-dependent complex reason-
ing chains (§ 2). With this observation, we experi-
ment with two strong retrieval models: a general-
purpose text-based retriever (DPR; Karpukhin et al.
(2020)) and a special-purpose table-based retriever
(DTR; Herzig et al. (2021)). We find that DPR,
without any table-specific model design or train-
ing, achieves similar accuracy as the state-of-the-
art table retriever DTR, and further fine-tuning on
NQ-table yields significantly superior performance,
casting doubt on the necessity of table-specific
model design in table retrieval (§ 3). Using DPR
as the base model, we then thoroughly examine
the effectiveness of both encoding structure implic-
itly with structure-preserving table linearization
(§ 4) and encoding structure explicitly with table-
specific model design, such as auxiliary embed-
dings and specialized attention mechanisms (§ 5).

We find that models can already achieve a degree
of structure awareness using properly linearized
tables as inputs, and additionally adding explicit
structure encoding model designs does not yield
a further improvement. In sum, the results reveal
that a strong text-based model is competitive for
table retrieval, and table-specific model designs
may have limited additional benefit. This indicates
the potential to directly apply future improved text
retrieval systems for table retrieval, a task where
they were previously considered less applicable.

2 NQ-table Analysis: How Much
Structure Does Table Retrieval
Require?

The NQ-table dataset (Herzig et al., 2021)
is a subset of the Natural Questions (NQ)
dataset (Kwiatkowski et al., 2019) which contains
questions from real users that can be answered
by Wikipedia articles. Previous works on text-
based QA extract the text portion from source
Wikipedia articles that can answer around 71k ques-
tions, while NQ-table extract tables that contain
answers for 12k questions. Unless otherwise spec-
ified, we use NQ-text to denote the commonly re-
ferred NQ dataset that can be answered by texts.

To better understand to what extent (if any) is
structure understanding required by table retrieval,
we perform a manual analysis on the NQ-table
dataset. Specifically, we randomly sample 100
questions and their relevant tables then categorize
their matching patterns.

Keyword Matching Without Structural Con-
cern Aligning with the insight that retrieval often
emphasizes content matching rather than complex
reasoning (Rogers et al., 2021), we find that 71 out
of the 100 samples only require simple keyword
matching, where 18 questions fully match with ta-
ble titles (Figure 2 (a)) and the other 53 questions
further match with table headers (Figure 2 (b)).

Retrieval that Requires Row/Column Alignment
For the other 29 samples, understanding table struc-
ture is helpful but only simple row/column align-
ment is needed. 21 of them require locating content
cells in a specific column and combining the infor-
mation from headers. For example in Figure 2(c),
under the general header “Population”, one should
locate the “Total” field by their structural relation to
confirm that the ‘total number’ measure of ‘popula-
tion’ exists. In addition, 7 of the samples are some-



……

Question: 
What is the largest man made lake in the us?

Question: 
What is the genus of a bald eagle?

(a)

(b)

……

(c)

Question: 
What is the population of Florida?

……

Figure 2: Table (a) matches the question by its title, (b)
matches topic in title and answer type in header, and in
(c) knowing the column alignment helps.

what ambiguous and may require external knowl-
edge or question clarification (Min et al., 2020).

In summary, our analysis reveals that understand-
ing table structure is not necessary in the majority
of cases, and even for cases where structural infor-
mation is useful, they merely require aligning the
rows/columns instead of building complex chains
of reasoning.

3 Text Retrieval vs Table Retrieval

Given the previous analysis, we hypothesize that
general-purpose text-based retrievers without table-
specific designs might not be necessarily worse
than special-purpose table-based retrievers, contra-
dictory to what most previous work has assumed
(Herzig et al., 2021, 2020; Yin et al., 2020; Wang
et al., 2021b). Properly trained text-based retriev-
ers might even outperform table-based retrievers
because the strong content matching ability learned
on text retrieval datasets can transfer to the table
retrieval task.

To validate these assumptions, we examine two
representative retrieval systems: the text-based
Dense Passage Retriever (DPR) and the table-based
Dense Table Retriever (DTR). We first briefly in-
troduce their input formats and model architectures
(§ 3.1,§ 3.2), then conduct experiments in both zero-
shot and fine-tuning settings and compare their ta-
ble retrieval performance (§ 3.3).

3.1 Text Retriever: DPR
We choose DPR (Karpukhin et al., 2020) as a rep-
resentative text retrieval model, mainly because of
(1) its impressive performance across many text-
related retrieval tasks, and (2) its similarity with
DTR from both training and modeling perspectives,
which make it easy to make fair comparisons.

DPR comprises a question-context bi-encoder
built on BERT (Devlin et al., 2018), which includes
three types of input embeddings as summarized
in Table 1. The question encoder BERTq encodes
each question q and outputs its dense representa-
tion using the representation of [CLS] token, de-
noted as hq = BERTq(q)[CLS]. The context en-
coder works similarly. To enable tables for sequen-
tial context inputs, we linearize each table into a to-
ken sequence T , which is then fed into the context
encoder BERTc to obtain its dense representation
hT = BERTc(T )[CLS]. The similarity score be-
tween a question q and a table T is computed as the
dot product of two vectors sim(q, T ) = hq · hT .

DPR has been trained only on sequential text
contexts. For each question in the NQ-text training
set, the model is trained to select the correct con-
text that contains the answer from a curated batch
of contexts including both the annotated correct
contexts and mined hard negative contexts.

To convert tables into the DPR input format,
we linearize tables into token sequences. We con-
catenate the title, the header row, and subsequent
content rows using a period ‘.’ (row delimiter).
Within each header or content row, we concatenate
adjacent cell strings using a vertical bar ‘|’ (cell
delimiter). A template table linearization reads
as [title].[header].[content1]. · · · .[contentn]. Al-
though the BERT encoder has the capacity for a
maximum of 512 tokens, DPR is only exposed to
contexts no longer than 100 words during train-
ing and testing. To avoid potential discrepancies
between its original training and our inference pro-
cedure, we shorten long tables by selecting the first
few rows that fit into the 100-word window.

3.2 Table Retriever: DTR
Dense Table Retriever (DTR) (Herzig et al., 2021)
is the current state-of-the-art table retrieval model
on the NQ-table dataset.

Model Architecture DTR largely follows the bi-
encoder structure of DPR, but differs from it in the
embedding layer. As shown in Table 1, DTR uti-
lizes the existing embeddings in alternative ways



and introduces new types of embeddings specifi-
cally designed to encode tables.

Both models use the BERT vocabulary index for
token embedding. For the segment index, DPR
assigns all tokens in a sequence to index 0, while
DTR distinguishes the title from table content by
assigning 0 and 1, respectively. For positions, DPR
inherits from BERT the sequence-wise order index
[0, 1, 2, ..., sequence length−1]; DTR adopts a cell-
wise reset strategy that records the index of a token
within its located cell [0, 1, ..., cell length − 1].

Most importantly, DTR introduces row and col-
umn embeddings to encode the structural position
of each token in the cell that it appears. This ex-
plicit join of three positional embeddings is poten-
tially more powerful than the BERT-style flat index.
Besides, concerning the high frequency of numeri-
cal values in tables, DTR adds a ranking index for
each token if it is part of a number.

Embeddings DPR DTR

token BERT vocab BERT vocab
segment 0 for all tokens 0 for text, 1 for table
position sequential cell-wise reset
row - row index
column - column index
rank - rank of token value

Table 1: Comparison of DPR and DTR embeddings.

Training Process DTR also has a more complex
training process than DPR. As summarized in Fig-
ure 3, DTR has a three-stage training using tables.

BERT

NQ-table Hard 
Negative

All 
Wikipedia 

Tables
Masked LM

All 
Wikipedia 

Tables

Inverse 
Cloze Task

NQ-table Hard 
Negative

DPR DTR

TAPAS

Figure 3: Comparison of DPR and DTR training.

First, model parameters, except for those ex-
tra table-specific embeddings, are initialized with

BERT weights. The model is then pre-trained
on all Wikipedia tables using the Masked LM
(MLM) (Devlin et al., 2018) task, yielding the
TAPAS (Herzig et al., 2020) model. Second, to
leverage TAPAS to the retrieval task, it is further
pre-trained using the Inverse Cloze task (ICT) in-
troduced by ORQA (Lee et al., 2019), again, on
all Wikipedia tables. Third, the model is trained
on the specific NQ-table dataset, similar to the way
that DPR is trained on text retrieval datasets: for
each question in the NQ-table training set, DTR
uses the annotated table as the positive context and
self-mined tables without answers as hard negative
(HN) contexts.

3.3 Text Retrieval Benefits Table Retrieval
To evaluate the benefit on table retrieval from train-
ing on in-domain text retrieval datasets, we com-
pare the performance of DPR and BERT (Devlin
et al., 2018) after fine-tuning on NQ-table.

As shown in Table 3, BERT-table significantly
underperforms DPR-table, indicating that training
on in-domain text retrieval datasets benefits the
table retrieval task. We conjecture that the large gap
is essentially because (1) NQ-text and NQ-table
questions share similar characteristics hence are
agnostic to the format of answer source (Wolfson
et al., 2020), and (2) NQ-text has a larger size than
NQ-table (71k versus 12k).

3.4 DPR vs DTR
To verify if table-specific model designs in DTR
are necessary, we start with comparing the original
DPR with DTR to evaluate their off-the-shelf per-
formance, then proceed to fine-tune DPR on NQ-
table to examine the how much improvement can
be brought by training data. We evaluate both mod-
els on NQ-table test set and measure the retrieval
accuracy by computing the portion of questions
where the top-k retrieved tables contain the answer.

For DPR experiments, we use the latest pub-
lished checkpoint2 where the hard-negative text
passages are mined using the DPR checkpoint
saved in the previous round. To reproduce the DTR
performance, we use the published checkpoints3

and run the retrieval inference.
To curate training samples for questions in the

NQ-table training set, we take the same positive
table used in DTR training. For negative contexts,

2https://github.com/facebookresearch/DPR
3https://github.com/google-research/tapas/blob/master/

DENSE_TABLE_RETRIEVER.md

https://github.com/facebookresearch/DPR
https://github.com/google-research/tapas/blob/master/DENSE_TABLE_RETRIEVER.md
https://github.com/google-research/tapas/blob/master/DENSE_TABLE_RETRIEVER.md


we use the original DPR checkpoint to retrieve the
top-100 table candidates for each question, from
which we take the highest-ranked tables without
answers as the hard negatives. We train with a batch
size of 16 and a learning rate of 2e−5. Experiments
are finished on four NVIDIA Tesla V100 GPUs.

Note that the published DPR and DTR check-
points are not strictly comparable, since the size of
DPR base falls between the DTR medium and DTR
large with respect to the number of parameters. We
report the performance of DTR in both medium
and large size to approximate the lower and upper
bounds for the DTR base model.

Size Layers Attention Heads Hidden Size

medium 8 8 512
base 12 8 768
large 24 16 1024

Table 2: Hyper-parameters for BERT models of varied
sizes. Models of different sizes vary in the number
of transformer layers, the number of heads in the self-
attention module, and the dimension of hidden states.

Table 2 shows the configurations of BERT-
variants in different sizes. As can be seen from the
hyper-parameter values, models of medium size
have the smallest capacity, base is an intermediate
configuration, and large size is the biggest.

As reported in Table 3, DPR is able to achieve a
zero-shot retrieval accuracy (DPR) on NQ-table
that is fairly close to the state-of-the-art DTR
model, even without any table-specific model de-
sign and training. Further, simply fine-tuning DPR
on NQ-table (DPR-table) using the same annotated
positive and mined hard-negative tables as DTR in-
creases the performance by a large margin, achiev-
ing superior performance than DTR, especially at
top ranking positions (i.e., small k).

Model Retrieval Accuracy
@1 @5 @10 @20 @50

DTR (medium) 62.32 82.51 86.75 91.51 94.26
DTR (large) 63.98 84.27 89.65 93.48 95.65

BERT-table 60.97 79.81 85.51 88.20 91.62

DPR 57.04 80.54 86.13 89.54 92.34
DPR-table 67.91 84.89 88.72 90.58 92.86

Table 3: Top-k table retrieval accuracy on NQ-table test
set. DPR is the original model checkpoint. DPR-table
and BERT-table are DPR and BERT fine-tuned on NQ-
table respectively.

These observations question the necessity of
both table-specific model designs listed in Table 1
and table-specific pre-training listed in Figure 3.
Given the task analysis in § 2 that table retrieval
only requires simple structure understanding, we
hypothesize that DPR, trained with table inputs
linearized from top-to-bottom and left-to-right, is
functionally capable of implicitly encoding simple
table structure such as row/column alignment, and
the benefit of extra table-specific model designs is
minimal. To thoroughly and rigorously verify our
hypothesis, we first examine the effect of different
ordering in table linearization in § 4, then exper-
iment with three widely-used structure injection
model designs by adding them on DPR in § 5.

4 Implicit Structure Encoding from
Linearized Tables

The simplest way to encode table structure is to
linearize the table following the top-to-bottom left-
to-right order and insert delimiters between cells
and rows, from which the sequence-oriented trans-
former models should also be able to recover the
two-dimensional table structure.

We hypothesize that this type of implicit struc-
ture encoding is sufficient for table retrieval, which
only requires simple structure understanding. To
verify this, we manipulate linearized tables by ran-
domly shuffling their rows/columns (§ 4.1) or re-
moving the delimiters (§ 4.2), and examine how
these perturbation affect the final performance.

4.1 Shuffling Rows and Columns

Our first experiment focuses on the order of table
linearization: if DPR relies on a proper lineariza-
tion to capture table structure, randomly shuffling
the table contents should corrupt the structure infor-
mation and hurt the representation quality, leading
to lower retrieval accuracy.

To verify this, we shuffle table cells within each
row, each column, or both. Cells in the same row
often describe the same entity from multiple prop-
erties according to their column headers, therefore
shuffling the order of multiple cells in the same row
corrupts their alignment with header cells. Mean-
while, cells in the same column are often of the
same semantic type but are attributes to different
entities in different rows, shuffling the order of
cells in the same column breaks their alignment
with entities. We also examine shuffling on both
dimensions, which completely removes the order



information from the table linearizations.
Since models trained on properly linearized ta-

bles might be prone to the train-test discrepancy
when tested on shuffled tables, we conjecture that
the gap between testing on proper tables and shuf-
fled tables cannot be fully attributed to the loss of
order information. We therefore conduct a more rig-
orous experiment by fine-tuning DPR on shuffled
tables in both dimensions (DPR-table w/ shuffle)
and test it on both proper and shuffled tables.

Method Retrieval Accuracy
Model Shuffle @1 @5 @10 @20 @50

DPR

- 57.04 80.54 86.13 89.54 92.34

row 55.18 79.19 85.82 89.75 92.44
column 57.04 80.85 86.65 89.34 92.55
both 57.97 79.61 84.89 89.44 92.55

DPR-table

- 67.91 84.89 88.72 90.58 92.86

row 55.18 76.09 80.64 85.40 89.23
column 58.39 77.74 82.92 86.44 89.86
both 54.76 75.16 80.64 84.87 88.82

- 62.94 80.12 84.99 88.92 91.30

DPR-table row 62.11 80.95 85.30 88.82 91.72
w/ shuffle column 64.91 82.30 86.75 89.54 92.55

both 63.35 81.06 85.20 89.34 91.93

Table 4: Top-k table retrieval accuracy on shuffled NQ
tables, using the original DPR, the fine-tuned (DPR-
table), and the fine-tuned on shuffled tables (DPR-table
w/ shuffle).

As shown in Table 4, on the original DPR model,
all table shuffling strategies result in minor vari-
ations in retrieval accuracy, which is intuitive be-
cause DPR has never been trained on linearized
tables and it is not sensitive to cell orders.

The performance of fine-tuned DPR (DPR-table)
drops significantly when tested on shuffled tables,
similar to the previous finding that T5 model is
also sensitive to the ordering of structured knowl-
edge (Xie et al., 2022). Besides the potential dis-
crepancy in table layout between training and test
inputs, this may indicate that DPR, although with-
out explicit structure encoding modules, also learns
to implicitly capture structures by training on lin-
earized table inputs.

To ablate out the influence of train-test discrep-
ancy, we also fine-tune DPR on shuffled posi-
tive and negative tables. As expected, DPR-table
w/ shuffle does not suffer from train-test discrep-
ancy. While DPR fine-tuned on shuffled tables still
outperforms the original DPR (57.04→62.94@1),
the improvement is not as significant as the im-

provement obtained by fine-tuning on proper tables
(57.04→67.91@1), indicating that DPR is able to
utilize structure-preserving table linearizations to
encode structures during training.

Comparing different shuffling dimensions, we
notice that in-row shuffling hurts the performance
more than in-column shuffling, indicating that pre-
serving semantic type alignment within each col-
umn is more important than preserving entity align-
ment within each row for table retrieval.

4.2 Removing Delimiters Between Rows/Cells
In this section, we study the impact of delimiters in
helping models to encode table structures. If delim-
iters are not included, it is theoretically impossible
to recover the table structure even from properly
linearized tables, because the boundaries between
different cells and rows are unknown. To verify if
delimiters can serve as effective indicators of table
structure, we study the usefulness of both inserting
delimiter (‘|’) between cells and inserting delimiter
(‘.’) between rows.

Similarly to the previous experiment, we evalu-
ate (1) the original DPR model (DPR), (2) the DPR
fine-tuned on tables with delimiters (DPR-table),
and (3) the one fine-tuned on linearized tables with-
out delimiters (DPR-table w/o delimiter).

Method Retrieval Accuracy
Model Delimiter @1 @5 @10 @20 @50

DPR

all 57.04 80.54 86.13 89.54 92.34

cell 56.00 79.40 85.30 89.54 92.34
row 54.24 77.54 82.92 87.68 92.13
none 55.49 79.09 84.78 89.44 92.03

DPR-table

all 67.91 84.89 88.72 90.58 92.86

cell 55.80 75.26 81.16 85.20 89.23
row 55.07 74.95 80.75 84.68 89.65
none 56.63 76.19 81.26 86.13 89.75

all 63.46 81.47 85.09 88.82 92.13

DPR-table cell 63.04 83.02 87.47 90.06 92.13
w/o delimiter row 63.35 80.54 85.20 89.34 92.03

none 64.49 81.88 86.23 89.86 92.55

Table 5: NQ-table retrieval accuracy with linearized
table w/ and w/o cell and row delimiters. cell linearizes
table by only inserting delimiters between cells, row
only inserts delimiters between rows, and none inserts
neither.

As shown in Table 5, for DPR, although the over-
all performance drop is small without delimiters,
separating cells is more important than separating
rows, which is intuitive because the number of cells
is larger than the number of rows. On DPR-table



that learns from properly delimited tables, the in-
fluence is more significant, and the extent of drop-
ping is similar to that of table structure shuffling
in Table 4. Also similar to the previous findings,
training on non-delimited tables (DPR-table w/o
delimiter) improves over the original DPR, but the
improvement is not as significant as the improve-
ment obtained by fine-tuning on delimited tables,
suggesting that cell and row delimiters help models
encode table structure.

5 Explicit Structure Encoding with
Table-specific Model Design

From the previous section, we conclude that DPR
can already encode simple table structures based on
structure-preserving linearized tables with correct
cell order and delimiters. The next question is “can
explicit table-specific model designs encode more
complex structure that is useful beyond the capacity
of implicit encoding?”

In this section, we examine three widely used
table-specific modules to explicitly encode table
structure information by adding these modules on
top of the DPR architecture. As summarized in
Table 6 and illustrated in Figure 4, we categorize
existing methods for table-specific structure encod-
ing into three representative types: (1) auxiliary
table-specific embeddings, (2) restricted hard at-
tention mask to enforce structure-aware attention,
and (3) soft attention bias based on the structural
relations of cell pairs. For each component, we add
it onto the DPR architecture and fine-tune under
the same setting as for DPR-table.

Method Papers

auxiliary embeddings

TAPAS (Herzig et al., 2020)
MATE (Eisenschlos et al., 2021)
TUTA (Wang et al., 2021b)
TABBIE (Iida et al., 2021)

hard attention mask

TURL (Deng et al., 2020)
SAT (Zhang et al., 2020)
ETC (Ainslie et al., 2020)
DoT (Krichene et al., 2021)
MATE (Eisenschlos et al., 2021)
TUTA (Wang et al., 2021b)

soft attention bias RAT-SQL (Wang et al., 2020)
‘ TableFormer (Yang et al., 2022)

Table 6: Structure encoding methods used in previous
works for table-related tasks.

5.1 Auxiliary Row and Columns Embeddings

We first examine if adding table-specific embed-
ding parameters would bring additional improve-
ment. Specifically, we add row and column embed-
dings into the DPR to encode the row and column
indices of tokens, which is denoted as DPR-table w/
emb. Both row and column indices are 1-indexed,
and 0 is used for tokens that are not part of the table
(e.g., title). We initialize row/column embeddings
with zero to allow smooth continual learning.

5.2 Hard Attention Mask

Another approach is to enforce structure-aware at-
tention using hard attention mask that only allows
attention between elements within their mutual
structural proximity, with the assumption that ele-
ments are only semantically relevant to elements
in their structural proximity. Specifically, Krichene
et al. (2021); Eisenschlos et al. (2021); Deng et al.
(2020) sparsify the attention mask such that each
token is only visible to other tokens that are either
within the same row or the same column. We apply
this masking strategy when fine-tuning DPR and
denote this setting as DPR-table w/ mask.

5.3 Soft Relation-based Attention Bias

The third method is to bias the attention weight
between two tokens based on their structural rela-
tion, which is a more fine-grained way to enforce
structure-aware attention than hard mask. Specifi-
cally, different bias scalars are added to the atten-
tion scores based on the relation between two cells.
Wang et al. (2020) categorize relations by columns,
while Yang et al. (2022) defines 13 relations based
on which component the token belongs to: sen-
tence, header, and cell. A more concrete example
is illustrated in Figure 4. Relational bias is invari-
ant to the numerical indices of rows and columns,
which is more robust to answer-invariant structure
perturbation. We follow Yang et al. (2022) to add
soft attention bias on DPR with 13 relations.

5.4 Results and Analysis

As shown in Table 7, methods that explicitly
encode table structures, either with additional
row/column embeddings (w/ emb), hard attention
mask (w/ mask), or soft relation-based attention
bias (w/ bias), do not bring improvements over
the DPR-table baseline, indicating that given the
capacity of DPR in implicitly encoding structure



Encoder

token + position + segment

DPR

token + position + segment

Auxiliary embeddings Hard attention mask

+
0 1 1 1 2 2 2

token + position + segment

Soft attention bias

token + position + segment

Embedding row id

0 1 2 3 1 2 3column id

c00

c11

c12

c13

c21

c22

c23

c00 c11 c12 c13 c21 c22 c23 c00 c11 c12 c13 c21 c22 c23 c00 c11 c12 c13 c21 c22 c23 c00 c11 c12 c13 c21 c22 c23

normal (global) attention

masked (not visible)

sentence-to-sentence

sentence-to-header

sentence-to-cell

header-to-sentence

cell-to-sentence

header-to-header (same column)
header-to-header (diff. column)
header-to-cell (same column)
header-to-cell (diff. column)
cell-to-header (same column)
cell-to-header (diff. column)
cell-to-cell (same column)
cell-to-cell (diff. column)

Figure 4: Illustration of three explicit structure encoding methods.

from linearized tables, the benefit of using special-
purpose structure encoding modules is minimal.

Model Retrieval Accuracy
@1 @5 @10 @20 @50

DPR-table 67.91 84.89 88.72 90.58 92.86

w/ emb 65.73 81.99 86.02 89.23 92.86
w/ mask 62.11 81.88 86.96 89.86 93.06
w/ bias 65.42 82.23 86.75 89.54 92.13

Table 7: Top-k table retrieval accuracy on NQ-table test.
DPR-table is fine-tuned on the NQ-table without any
table-specific modules, while the other three methods
add auxiliary row/column embeddings (w/ emb), hard
attention mask (w/ mask), and soft relation-based atten-
tion bias respectively (w/ bias).

6 Related Work

Open-domain Question Answering Open-
domain QA systems often use a retriever-reader
pipeline, where the retriever retrieves relevant
contexts and the reader extracts or generates
answer from them. Because the candidate context
corpus is usually large with millions of documents,
good retrieval accuracy is crucial for open-domain
QA systems (Karpukhin et al., 2020). Beyond
texts, another common sources for answering
open-domain questions is tables. Herzig et al.
(2021) recently identified a subset of Natural
Questions (NQ) dataset (Kwiatkowski et al., 2019)
that is answerable by Wikipedia tables. Oguz
et al. (2021) found that incorporating structured
knowledge is beneficial for open-domain QA tasks.

Ma et al. (2021) showed that verbalizing structured
knowledge into fluent text bring further gains over
raw format for open-domain QA. Different from
prior work, our paper analyzes different strategies
for encoding tables with a focus on the task of
table retrieval.

Table Understanding To encode the relational
structure of tables, CNNs (Chen et al., 2019a),
RNNs (Gol et al., 2019), LSTMs (Fetahu et al.,
2019), and their combinations (Chen et al., 2019b)
are explored. In addition, graph neural networks
(GNN) are used, especially for tables with complex
structures (Koci et al., 2018; Zayats et al., 2021; Vu
et al., 2021; Bhagavatula et al., 2015). With the re-
cent advances in pre-trained language models, table
encoders adapt pre-trained language models with
additional table-specific modules encoding struc-
ture (Herzig et al., 2020; Yin et al., 2020; Wang
et al., 2021b) and numeracy (Wang et al., 2021b;
Herzig et al., 2020). These methods are intention-
ally built for tables, but their necessity in each task
remains unknown. Our work exploits a generic
model to show that content-emphasized tasks like
retrieval do not require such specific designs.

Table Retrieval Earlier works focus on web table
search in response to keyword queries (Cafarella
et al., 2008, 2009; Balakrishnan et al., 2015; Pimp-
likar and Sarawagi, 2012) or a seed table (Sarmad
et al., 2012). Many of them use the 60 keywords
and relevant web tables collected by Zhang and Ba-
log (2018). Tables are modeled by aggregating mul-



tiple fields (Zhang et al., 2019), contexts (Trabelsi
et al., 2019), and synthesized schema labels (Chen
et al., 2020b). More recently, Chen et al. (2020c);
Wang et al. (2021a) use structure-augmented BERT
for retrieval. These works largely treat the retrieval
task on its own account and target similarity under
the traditional Information Retrieval (IR).

7 Conclusion

Given the importance of finding relevant tables
when answering questions in the NQ-table dataset,
we study the task of table retrieval and find that
table retrieval emphasizes content rather than table
structure. Our experiments with the text-generic
Dense Passage Retriever (DPR) and the state-of-
the-art table-specific Dense Table Retriever (DTR)
demonstrate that DPR can already encode sim-
ple structures based on linearized tables and table-
specific designs such as auxiliary embeddings, hard
attention mask, and soft attention bias are not nec-
essary. Our findings suggest that future develop-
ment on table retrieval can potentially be built upon
successful text retrievers and table-specific model
designs should be carefully examined to avoid un-
necessary complexity.

Acknowledgements

We would like to thank Frank F. Xu and Kaixin Ma
for the helpful discussions and anonymous review-
ers for their valuable suggestions on this paper.

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-

clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. Etc: Encoding long and structured inputs in
transformers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 268–284.

Sreeram Balakrishnan, Alon Halevy, Boulos Harb, Hon-
grae Lee, Jayant Madhavan, Afshin Rostamizadeh,
Warren Shen, Kenneth Wilder, Fei Wu, and Cong Yu.
2015. Applying webtables in practice.

Chandra Sekhar Bhagavatula, Thanapon Noraset, and
Doug Downey. 2015. Tabel: Entity linking in web
tables. In International Semantic Web Conference,
pages 425–441. Springer.

Michael J Cafarella, Alon Halevy, and Nodira Khous-
sainova. 2009. Data integration for the relational web.
Proceedings of the VLDB Endowment, 2(1):1090–
1101.

Michael J Cafarella, Alon Halevy, Daisy Zhe Wang,
Eugene Wu, and Yang Zhang. 2008. Webtables: ex-
ploring the power of tables on the web. Proceedings
of the VLDB Endowment, 1(1):538–549.

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and
Charles Sutton. 2019a. Colnet: Embedding the se-
mantics of web tables for column type prediction.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 29–36.

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks,
and Charles Sutton. 2019b. Learning seman-
tic annotations for tabular data. arXiv preprint
arXiv:1906.00781.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Wang. 2020a. Hybridqa: A
dataset of multi-hop question answering over tabular
and textual data. arXiv preprint arXiv:2004.07347.

Zhiyu Chen, Haiyan Jia, Jeff Heflin, and Brian D Davi-
son. 2020b. Leveraging schema labels to enhance
dataset search. Advances in Information Retrieval,
12035:267.

Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu,
and Brian D Davison. 2020c. Table search using a
deep contextualized language model. In Proceedings
of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 589–598.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2020. Turl: Table understanding through repre-
sentation learning. arXiv preprint arXiv:2006.14806.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Julian Eisenschlos, Maharshi Gor, Thomas Mueller, and
William Cohen. 2021. Mate: Multi-view attention for
table transformer efficiency. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7606–7619.

Besnik Fetahu, Avishek Anand, and Maria Koutraki.
2019. Tablenet: An approach for determining fine-
grained relations for wikipedia tables. In The World
Wide Web Conference, pages 2736–2742.

Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely.
2019. Tabular cell classification using pre-trained
cell embeddings. In 2019 IEEE International Confer-
ence on Data Mining (ICDM), pages 230–239. IEEE.

Jonathan Herzig, Thomas Müller, Syrine Krichene, and
Julian Martin Eisenschlos. 2021. Open domain ques-
tion answering over tables via dense retrieval. arXiv
preprint arXiv:2103.12011.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Mueller, Francesco Piccinno, and Julian Eisensch-
los. 2020. Tapas: Weakly supervised table parsing



via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. Tabbie: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456.

Sujay Kumar Jauhar, Peter Turney, and Eduard Hovy.
2016. Tables as semi-structured knowledge for ques-
tion answering. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 474–483.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Elvis Koci, Maik Thiele, Wolfgang Lehner, and Oscar
Romero. 2018. Table recognition in spreadsheets
via a graph representation. In 2018 13th IAPR Inter-
national Workshop on Document Analysis Systems
(DAS), pages 139–144. IEEE.

Syrine Krichene, Thomas Mueller, and Julian Eisensch-
los. 2021. Dot: An efficient double transformer for
nlp tasks with tables. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3273–3283.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open do-
main question answering. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6086–6096.

Qian Liu, Bei Chen, Jiaqi Guo, Zeqi Lin, and Jian-
guang Lou. 2021. Tapex: Table pre-training via
learning a neural sql executor. arXiv preprint
arXiv:2107.07653.

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg,
and Jianfeng Gao. 2021. Open domain question an-
swering with a unified knowledge interface. arXiv
preprint arXiv:2110.08417.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. Ambigqa: Answering am-
biguous open-domain questions. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 5783–
5797.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2021.
Unik-qa: Unified representations of structured and
unstructured knowledge for open-domain question
answering. arXiv preprint arXiv:2012.14610, 54:57–
60.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480.

Rakesh Pimplikar and Sunita Sarawagi. 2012. Answer-
ing table queries on the web using column keywords.
Proceedings of the VLDB Endowment, 5(10):908–
919.

Anna Rogers, Matt Gardner, and Isabelle Augenstein.
2021. Qa dataset explosion: A taxonomy of nlp
resources for question answering and reading com-
prehension. arXiv preprint arXiv:2107.12708.

Anish Das Sarmad, Lujun Fang, Nitin Guptad, Alon
Halevyd, Hongrae Leed, Fei Wud, Reynold Xin, and
Cong Yud. 2012. Finding related tables.

Mohamed Trabelsi, Brian D Davison, and Jeff Heflin.
2019. Improved table retrieval using multiple con-
text embeddings for attributes. In 2019 IEEE Inter-
national Conference on Big Data (Big Data), pages
1238–1244. IEEE.

Binh Vu, Craig A Knoblock, Pedro Szekely, Minh Pham,
and Jay Pujara. 2021. A graph-based approach for
inferring semantic descriptions of wikipedia tables.
In International Semantic Web Conference, pages
304–320. Springer.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578.

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and
Pedro Szekely. 2021a. Retrieving complex tables
with multi-granular graph representation learning.
arXiv preprint arXiv:2105.01736.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021b. Tuta: Tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 1780–1790.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Transactions of the Association for
Computational Linguistics, 8:183–198.



Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
Tableformer: Robust transformer modeling for table-
text encoding. arXiv preprint arXiv:2203.00274.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Yi Chern Tan,
Xinyi Yang, Dragomir Radev, Caiming Xiong, et al.
2020. Grappa: Grammar-augmented pre-training for
table semantic parsing. In International Conference
on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Vicky Zayats, Kristina Toutanova, and Mari Osten-
dorf. 2021. Representations for question answering
from documents with tables and text. arXiv preprint
arXiv:2101.10573.

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi
Cao, Fuzheng Zhang, and Zhongyuan Wang. 2020.
Table fact verification with structure-aware trans-
former. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1624–1629.

Li Zhang, Shuo Zhang, and Krisztian Balog. 2019. Ta-
ble2vec: Neural word and entity embeddings for ta-
ble population and retrieval. In Proceedings of the
42nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 1029–1032.

Shuo Zhang and Krisztian Balog. 2018. Ad hoc table
retrieval using semantic similarity. In Proceedings
of the 2018 world wide web conference, pages 1553–
1562.

Shuo Zhang and Krisztian Balog. 2020. Web table ex-
traction, retrieval, and augmentation: A survey. ACM
Transactions on Intelligent Systems and Technology
(TIST), 11(2):1–35.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.


