
Reasoning Like Program Executors

Xinyu Pi♢∗ , Qian Liu§∗, Bei Chen†, Morteza Ziyadi ♡, Zeqi Lin†

Yan Gao†, Qiang Fu†, Jian-Guang Lou†, Weizhu Chen♡

♢University of Illinois Urbana-Champaign, Urbana, USA; §Beihang University, Beijing, China
†Microsoft Research Asia, Beijing, China; ♡Microsoft Azure AI, Redmond, WA, USA

xinyupi2@illinois.edu; qian.liu@buaa.edu.cn

{bei.chen, morteza.ziyadi, zeqi.lin, yan.gao, qifu, jlou, wzchen}@microsoft.com

Abstract

Reasoning over natural language is a long-
standing goal for the research community.
However, studies have shown that existing lan-
guage models are inadequate in reasoning. To
address the issue, we present POET, a new pre-
training paradigm. Through pre-training lan-
guage models with programs and their execu-
tion results, POET empowers language mod-
els to harvest the reasoning knowledge pos-
sessed in program executors via a data-driven
approach. POET is conceptually simple and
can be instantiated by different kinds of pro-
grams. In this paper, we show three empir-
ically powerful instances, i.e., POET-Math,
POET-Logic, and POET-SQL. Experimental re-
sults on six benchmarks demonstrate that POET
can significantly boost model performance on
natural language reasoning, such as numeri-
cal reasoning, logical reasoning, and multi-
hop reasoning. Taking the DROP benchmark
as a representative example, POET improves
the F1 metric of BART from 69.2% to 80.6%.
Furthermore, POET shines in giant language
models, pushing the F1 metric of T5-11B to
87.6% and achieving a new state-of-the-art per-
formance on DROP. POET opens a new gate
on reasoning-enhancement pre-training and we
hope our analysis would shed light on the future
research of reasoning like program executors.

1 Introduction

Recent breakthroughs in pre-training illustrate the
power of pre-trained Language Models (LM) on a
wide range of Natural Language (NL) tasks. Pre-
training on self-supervised tasks, such as auto-
regressive language modeling (Brown et al., 2020)
and masked language modeling (Devlin et al., 2019;
He et al., 2021) using large amounts of NL sen-
tences, boosts the language understanding of mod-
els by a large margin (Wang et al., 2018a). How-
ever, existing pre-training paradigms have primar-

∗Work done during internship at Microsoft Research Asia.
The first two authors contributed equally.

Language ModelProgram
(e.g., SQL query, python code)

Program Context
(e.g., database, variables in python)

Program Executor
(e.g., MySQL, python interpreter)

Sentence
(e.g., question in reading comprehension)

AnswerLanguage Model

Natural Context
(e.g., passage in reading comprehension)

Fine-tuning on Natural Language Reasoning

Pre-training on Program Execution

Execution
Result

Instill Reasoning Knowledge into Language Model

Figure 1: Given a program context and a program as
input, POET pre-trains LMs to output the execution
result. After fine-tuning on downstream tasks, POET
can boost LMs on reasoning-required scenarios. Ex-
planations about program context, program, program
executor and execution result can be found in § 3. More
examples of natural context and sentence are in Table 1.

ily focused on language modeling and paid little
attention to advanced reasoning capabilities (Ta-
ble 1). As a result, though reaching near-human
performance on several tasks, pre-trained LMs are
still far behind expectation in reasoning-required
scenarios, such as numerical reasoning (Wallace
et al., 2019; Ravichander et al., 2019) and logical
reasoning (Yu et al., 2020; Liu et al., 2020). This
observed deficiency calls for the development of
general-purpose pre-training approaches suitable
for learning reasoning skills.

In light of this, we conceive a new pre-training
paradigm, POET (Program Executor), to boost var-
ious reasoning skills over NL sentences by pre-
training LMs with the task of program execution.
As illustrated in Figure 1, with a program (e.g.,
SQL query) and its associated program context
(e.g., database) as input, the model receives auto-
matic supervision from an established program ex-
ecutor (e.g., MySQL) and learns to produce correct

Type Example Dataset Task
Numerical Question: What is the difference in casualty numbers between Bavarian and

Austrian? Passage: [DOC] The popular uprising included large areas of . . .
DROP (Dua
et al., 2019)

Reading Comprehension
(RC)

Logical Conclusion: One employee supervises another who gets more salary than
himself. Fact: [DOC] David, Jack and Mark are colleagues in a company.
David supervises Jack, and Jack supervises Mark. David gets more . . .

LogiQA (Liu
et al., 2020)

Reading Comprehension
(RC)

Multi-hop Question: At which university does the biographer of John Clare teach English
Literature? Passage: [DOC] John Clare : John Clare was an English poet
. . . [DOC] CMS College Kottayam : The CMS College is one . . .

HotpotQA
(Yang et al.,
2018)

Reading Comprehension
(RC)

Hybrid Question: What was the percentage change in gaming between 2018 and
2019? Context: [TAB] Server products and cloud services | 32, 622 |
26, 129 . . . [DOC] Our commercial cloud revenue, which includes Office . . .

TAT-QA (Zhu
et al., 2021)

Question Answering
(QA)

Quantitative Hypothesis: Teva earns $7 billion a year. Premise: After the deal closes,
Teva will generate sales of about $7 billion a year, the company said.

EQUATE
(Ravichander
et al., 2019)

Natural Language Infer-
ence (NLI)

Table 1: The demonstration of five representative reasoning types. Listed are the types, the example questions,
the representative dataset and their corresponding tasks. [DOC] and [TAB] indicates the start of a passage and
a semi-structured table respectively. Here we regard Question , Conclusion and Hypothesis as sentence, and
Passage , Fact , Context and Premise as natural context in Figure 1.

execution result. We believe that when LMs imitate
program execution procedures, they could poten-
tially learn the reasoning knowledge that humans
adopted to create the associated program executor,
and tackle NL sentences with the learned reason-
ing capability. This reveals the key hypothesis of
POET: program executors are crystallized knowl-
edge of human reasoning, and such knowledge can
be transferred to natural language via pre-training.
In other words, natural languages may not be a ne-
cessity in model pre-training for better reasoning
capability over language.

While it is extremely difficult to obtain large
amounts of clean natural language sentences con-
taining clear evidence of reasoning, thanks to the
artificial and compositional nature of programming
languages, synthesized programs can be made ar-
bitrarily complicated but readily available on any
scale. These merits greatly facilitate the construc-
tion of a high-quality pre-training corpus, address-
ing most of unresolved shortcomings in previ-
ous reasoning-enhancement pre-training. In other
words, POET differs from existing pre-training
paradigms relying on noisy NL data. In summary,
our contribution is three-fold:

• We propose POET, a new pre-training
paradigm for boosting reasoning capability
of language models by imitating program ex-
ecutors. Along with this paradigm, we present
three exemplary across-program POET instan-
tiations for various reasoning capabilities.

• We show with quantitative experiments that
the reasoning ability our models obtains from
POET pre-training is transferable to broader

natural language scenarios. On six reasoning-
focused downstream tasks, POET enables
general-purpose language models to achieve
comparable or even better performance than
previous state-of-the-art specialized models.

• We carry out comprehensive analytical stud-
ies on POET and summarize some insightful
findings in our pre-training. We hope these in-
sights would shed light on the future research
of reasoning like program executors.

2 Related Work

Since we focus on reasoning over natural language,
our work is closely related to previous works which
also concentrate on reasoning skills in NL tasks.
Regarding methods to inject reasoning skills into
LMs, our method is related to two lines of work
contributing to the topic: the line of specialized
models and the line of pre-training. Last, our work
is also related to program execution since we use
program executors in our pre-training.

Reasoning Skills The literature focuses on rea-
soning skills including numerical reasoning (Dua
et al., 2019), multi-hop reasoning (Yang et al.,
2018), reasoning in hybrid context (Chen et al.,
2020b; Zhu et al., 2021) and logical reasoning (Liu
et al., 2020; Yu et al., 2020). Our work concentrates
on improving the above reasoning skills, leaving
the other reasoning abilities such as commonsense
reasoning (Zellers et al., 2018; Talmor et al., 2019;
Bhagavatula et al., 2020) for future work.

Reasoning via Specialized Models Early works
typically design specialized models and augment

Pre-training

…

(a) Reasoning via
Specialized Models

(b) Reasoning via Pre-training
over Natural Language

(c) Reasoning via Pre-training
over Program (Ours)

…

Pre-training

Figure 2: The illustration of different lines of reasoning, including (a) reasoning via specalized models, (b) reasoning
via pre-training over natural language and (c) reasoning via pre-training over program.

them into LMs for different types of questions (Dua
et al., 2019; Andor et al., 2019; Hu et al., 2019;
Ding et al., 2019). Taking Hu et al. (2019) as
an example, they first predicted the answer type
of a given question (e.g., “how many”), and then
adopted the corresponding module (e.g., count
module) to predict the answer. Although these
methods work well on a specific dataset, it is chal-
lenging for them to scale to complex reasoning
scenarios (Chen et al., 2020c). Differently, our
work follows the line of reasoning via pre-training,
which enjoys better scalability.

Reasoning via Pre-training This line of work
focuses on the continued pre-training of LMs using
large-scale data which involves reasoning. The pre-
training data are generally NL text, which are either
crawled from Web with distant supervision (Deng
et al., 2021), generated by a model-based gener-
ator (Asai and Hajishirzi, 2020), or synthesized
via human-designed templates (Geva et al., 2020;
Yoran et al., 2021; Campagna et al., 2020; Wang
et al., 2021). However, large-scale high-quality
textual data involving reasoning are difficult to col-
lect (Deng et al., 2021). Meanwhile, as the com-
plexity of desired reasoning operations increases,
synthesizing high-quality (e.g., fluent) NL sen-
tences becomes more challenging. Different from
the above pre-training methods relying on NL data,
our pre-training is performed on programs. These
programs can be synthesized at any scale with high-
quality and rich-diversity, and thus are much easier
to collect than NL sentences.

Program Execution We present a framework to
leverage program executors to train LMs, and thus
our work is close to recent works on learning a neu-
ral program executor. In this line, the most related
work to ours is Liu et al. (2021), which revealed

the possibility of SQL execution on helping table
pre-training. Different from them mainly focus-
ing on table-related tasks, we present a general-
ized approach to include Math, Logic, and SQL, as
well as their applications on many different natural
language downstream tasks. Other related stud-
ies include learning program executors on visual
question answering (Andreas et al., 2016), read-
ing comprehension (Gupta et al., 2019; Khot et al.,
2020), knowledge base question answering (Ren
et al., 2021) and 3D rendering (Tian et al., 2019).
These works mainly focus on learning a neural
network to represent the program executor, while
ours focuses on transferring the knowledge of pro-
gram executor to downstream tasks via pre-training.
Other lines of research leverage program execution
in inference as a reliable sanity guarantee for gen-
erated programs by pruning non-executable candi-
dates (Wang et al., 2018b; Chen et al., 2019, 2021;
Odena et al., 2020; Ellis et al., 2019; Chen et al.,
2019; Sun et al., 2018; Zohar and Wolf, 2018).

3 Reasoning Like Program Executors

Reasoning is the process where deduction and in-
duction are sensibly applied to draw conclusion
from premises or facts (Scriven, 1976). As a
supreme feature of intelligence, humans apply rea-
soning across modalities. Taking numerical rea-
soning as an example, humans can tell how many
chocolates are consumed from a math word prob-
lem description, or from a real-world event where
a mother gets off work and finds the choco-can
empty, aside standing their guilty-looking kids with
brownish stains on their faces. Through detach-
ment of information from their superficial modality
and symbolic abstraction, humans manage to unify
input formats and condense their numerical reason-
ing knowledge into one executable symbolic sys-

→

→

→

→

Figure 3: The illustration of three instantiations of POET to instill different kinds of reasoning knowledge, including
POET-Math, POET-Logic and POET-SQL. The red text indicates the variables read by the program.

tem – This is the origin of an arithmetic program
executor. If a model can master these reasoning
skills by imitating program executors, we believe
in the possibility of transferring those reasoning
skills to different modalities. In our case, we ex-
pect language models to transfer reasoning to NL
related tasks. Given this motivation, we discuss
fundamental components of POET in the rest of
this section, and present three concrete instantia-
tions of our framework in § 4.

Program refers to a finite sequence of symbols
which can be understood and executed by machines.
For example, a program can be a logical form (e.g.,
Prolog), a piece of code (e.g., Python), or a math ex-
pression. Compared with NL sentences, programs
are more formal. Each well-established program
follows a specific set of grammar rules and can thus
be synthesized in a systematic way. The generaliz-
ability of POET framework is free from assumption
and derived from the set of grammar rules on which
a program follows. In POET, as long as a program
returns meaningful output to reflect its computa-
tional procedure, it is an acceptable program.

Program Context is the environment in which
a program is running, which holds numerous vari-
ables accessible to the program. These variables
serve as pivot points that anchor program context
with the program. In the same sense, the question
and the passage in reading comprehension hold a
similar relationship. This suggests a natural anal-
ogy between the program to program context and
the sentence to natural context in Figure 1.

Program Executor is a black-box software that
can execute a given program within the program
context. An example could be the Python inter-

preter that executes each line of code, with its spe-
cific input data structures as program context. For
POET, program executors play the role of teachers
to educate student (i.e., LMs) on reasoning knowl-
edge they contain. POET expects program execu-
tors to deterministically execute an input program
with respect to a specific program context.

Execution Result is obtained from the program
executor, given a program and program context as
input. It is much analogous to the answer part in
NL downstream tasks. The execution result is the
primary observable data reflecting the intermediate
reasoning process, and serves as the supervision
provided by the program executor.

4 Instantiations of POET

Along with the POET paradigm, we manifest three
exemplary across-program POET instantiations
(Figure 3), named POET-Math, POET-Logic and
POET-SQL, for injecting numerical, logical and
integrated reasoning capabilities into LMs.

4.1 POET-Math for Numerical Reasoning

The POET-Math (Left in Figure 3) aims at injecting
numerical reasoning skills into LMs. Specifically,
POET-Math is designed to boost the basic arith-
metic skills (i.e., addition and subtraction) of LMs
on downstream tasks. This arithmetic skill aligns
with requirements to answer questions centered on
addition / subtraction between two numbers, such
as “What is the difference in casualty numbers be-
tween Bavarian and Austrian?”.

Pre-training Task Given several floating-point
variables as the program context and a math ex-
pression only involving addition/ subtraction as the

program, the pre-training task of POET-Math is to
calculate the math expression. Taking the leftmost
example from Figure 3, receiving the concatena-
tion of the program and the program context as the
input, POET-Math is trained to output the number
180.7. Considering the output can be an arbitrary
number, the encoder-decoder model (Lewis et al.,
2020) is more suitable for this pre-training task.

Pre-training Corpus Each example in the cor-
pus contains a math expression containing up to 2
operators and 3 variables, and a program context
which contains at most 30 floating-point variables 1.
The mathematical addition and subtraction opera-
tors are denoted by + and -, respectively. The
values of variables vary from 0.0 to 1000.0. By
random generation, we synthesize 4 million exam-
ples as the pre-training corpus for POET-Math.

4.2 POET-Logic for Logical Reasoning
The POET-Logic (Mid in Figure 3) aims at inject-
ing logical reasoning (e.g., necessary conditional
reasoning) skills into LMs. For example, taking
the facts “Only if the government reinforces basic
education can we improve our nation’s education
to a new stage. In order to stand out among other
nations, we need to have a strong educational en-
terprise.” as premises, POET-Logic is intended to
help LMs identify whether the conclusion “In order
to stand out among nations, we should reinforce
basic education” is necessarily implied.

Pre-training Task Given a few first-order logic
premise statements as the program context and
one conclusion statement as the program, the pre-
training task of POET-Logic is to identify if the
program is necessarily implied from the program
context. The execution result, i.e., the implication
relationship between the program and the program
context, is either True or False. Since the output
is binary, an encoder-only model (Liu et al., 2019)
is sufficient to perform this pre-training task.

Pre-training Corpus Each example in the cor-
pus contains several premise statements and a con-
clusion statement. Initially, the statement collection
for each example is empty. To produce it, we first
allocate 5 Boolean variables (e.g., p and q in Fig-
ure 3) and randomly sample at most 8 pairs from
their pairwise combinations. For each sampled pair
(p, q), we randomly select a statement from the set
{p → q, p → ¬ q,¬ p → ¬ q,¬ p → q} and add

1More discussion can be found in Appendix § C.

Type Example SQL Program

Arithmetic SELECT [COL]1 - [COL]2

Superlative SELECT MAX([COL]1)

Comparative SELECT [COL]1 WHERE [COL]2 > [VAL]2

Aggregation SELECT COUNT([COL]1)

Intersection SELECT [COL]1 WHERE [COL]2 = [VAL]2

AND [COL]3 = [VAL]3

Union SELECT [COL]1 WHERE [COL]2 = [VAL]2

OR [COL]3 = [VAL]3

Nested SELECT [COL]1 WHERE [COL]2 IN (

SELECT [COL]2 WHERE [COL]3 = [VAL]3)

Table 2: The seven typical SQL types corresponding
to numerical reasoning (Top) and multi-hop reasoning
(Bottom). Listed are the type and the example SQL pro-
grams. [COL] and [VAL] represent the table column
and the table cell value, respectively.

it to the collection. Once the statement collection
is prepared, we randomly select a statement as the
conclusion statement (i.e., program) and the rest
as the premise statements (i.e., program context).
Last, we employ Z3 (De Moura and Bjørner, 2008),
the well-known satisfiability modulo theory solver,
as our program executor to obtain the implied re-
sult. Finally, we synthesize 1 million examples as
the pre-training corpus for POET-Logic, and nearly
16% examples correspond to True.

4.3 POET-SQL for Integrated Reasoning

POET-Math and POET-Logic each focus on one
specific reasoning skill. Differently, POET-SQL
allows LMs to master different reasoning skills
simultaneously via integrated reasoning (Table 2).

Pre-training Task Given a database as the pro-
gram context and a SQL query as the program, the
pre-training task of POET-SQL is to mimic the
query result generation. Since the encoder-decoder
LMs can generate arbitrary tokens, they are well
suited for the task. On the other hand, encoder-only
models have insufficient expressiveness to produce
out-of-context query results. To allow them to ben-
efit from the SQL execution, we tailor the task into
a query result selection task for encoder-only mod-
els, which only utilizes query results that can be
found in the database. More specifically, the task
requires encoder-only models to perform an IO se-
quence tagging process to find the query results in
the database. Here the tag I is for golden tokens in
the query results, while O is for other tokens.

Pre-training Corpus Each example in the cor-
pus contains a SQL query, a database and a query

result. Notably, following Liu et al. (2021), each
database is flattened into a sequence when it is fed
into LMs. Meanwhile, to avoid databases being too
large to fit into memory, we randomly drop the rows
of large databases until their flattened sequences
contains less than 450 tokens. For the query result
generation task, we follow the same corpus con-
struction strategy as described in Liu et al. (2021).
Concretely, by instantiating SQL templates from
SQUALL (Shi et al., 2020) over databases provided
by WIKISQL (Zhong et al., 2017), 5 million ex-
amples are synthesized for pre-training. For the
query result selection task, the pre-training corpus
is constructed in a similar way as above, except that
only the examples whose query results are suitable
for encoder-only are retained. This filtering results
in a corpus containing nearly 2 million examples.

5 Experiments & Analysis

To verify the effectiveness of our POET frame-
work on boosting the reasoning capabilities of LMs,
we first apply our method on top of several back-
bone models, including encoder-only models and
encoder-decoder models. Then we conduct experi-
ments on six typical reasoning benchmark datasets
and compare POET models with previous state-
of-the-art (SOTA) methods. Last, we perform a
detailed pre-training analysis to demonstrate key
insights with respect to each part in our framework.

5.1 Backbone Models

RoBERTa (Liu et al., 2019), one of the most popu-
lar LMs, is elected as the backbone in encoder-only
LMs. We mark the RoBERTa model trained under
POET as POET-XRoBERTa, where X is either Logic
or SQL. BART (Lewis et al., 2020) is chosen as the
backbone in encoder-decoder LMs. We mark the
BART model trained under POET as POET-XBART,
where X is either Math or SQL. Meanwhile, to ex-
plore whether our approach is simultaneously effec-
tive for much larger LMs, we also apply our frame-
work to T5-11B (Raffel et al., 2020), the largest
publicly available language model.

5.2 Experimental Datasets

We perform experiments on different datasets
including DROP (Dua et al., 2019), Hot-
potQA (Yang et al., 2018), TAT-QA (Zhu et al.,
2021), EQUATE (Ravichander et al., 2019) and
LogiQA (Liu et al., 2020). Table 1 shows examples
of these datasets and highlights their correspond-

ing reasoning types. More details can be found in
Appendix § B. Furthermore, SVAMP (Patel et al.,
2021), the challenging diagnostic dataset for prob-
ing numerical reasoning, is employed in our ex-
periments to test the generalization capability of
our fine-tuned models on DROP. Our models are
evaluated on its addition and subtraction subsets.
We specify our pre-training and fine-tuning details
in Appendix § E.

5.3 Methods Comparison

In this section, we compare our models with origi-
nal LMs and previous state-of-the-art methods.

5.3.1 Comparing to Original LMs
Applying LMs to Different Datasets For any
encoder-decoder LM (e.g., BART), we treat all
datasets as generative tasks and fine-tune it directly
to generate answers. As for the encoder-only LM
(e.g., RoBERTa), the fine-tuning strategies on dif-
ferent datasets are slightly different. (i) On DROP,
we cast the span selection task as a sequence tag-
ging problem following Segal et al. (2020). (ii)
On TAT-QA, we in-place substitute the RoBERTa-
Large encoder in TAGOP (Zhu et al., 2021) with our
POET-SQLRoBERTa to verify its effectiveness, and
keep the rest of the components unchanged. (iii) On
HotpotQA, we train two classifiers independently
to predict the start and end positions of the an-
swer span, as done in Devlin et al. (2019). (iv) On
EQUATE, we train a classifier to perform sequence
classification on concatenated premise-hypothesis
pairs. Notably, we follow the official setup to
train LMs on the MNLI dataset (Williams et al.,
2018) and evaluate their zero-shot performance on
EQUATE. (v) On LogiQA, we train a classifier
to perform binary classification on concatenated
question-option-context pairs, as suggested in Liu
et al. (2020). (vi) On SVAMP, the encoder-only
model is not suitable since the answers are out-of-
context. On all datasets, our models are evaluated
with official evaluation metrics EM and F1.

Experimental Results Table 3 presents a per-
formance comparison between POET models and
their vanilla versions without POET. Across all
instances, we observe significant performance in-
crement on downstream tasks requiring correspond-
ing reasoning skills. Specifically, (a) POET-Math
boosts numerical reasoning ability of BART, bring-
ing in 9.0% EM gain on DROP; (b) POET-Logic
improves logical reasoning skill of RoBERTa, re-

(a) The experimental results of POET-Math.

Models DROP♡ (EM) DROP♡ (F1)

BART-Large 66.2 69.2
POET-MathBART 75.2 (+9.0) 78.1 (+8.9)

(b) The experimental results of POET-Logic.

Models LogiQA (EM)

RoBERTa-Large 36.7
POET-LogicRoBERTa 38.9 (+2.2)

(c) The experimental results of POET-SQL.

Models DROP♡ HotpotQA♡ TAT-QA♡ SVAMP EQUATE

EM F1 EM F1 EM F1 EM EM

BART-Large 66.2 69.2 65.6 78.9 38.8 46.7 12.4 62.6
POET-SQLBART 77.7 (+11.5) 80.6 (+11.4) 66.5 (+0.9) 79.7 (+0.8) 41.5 (+2.7) 49.6 (+2.9) 33.5 (+21.1) 66.5 (+3.9)

RoBERTa-Large 78.1 85.3 67.6 81.1 55.2 62.7 – 64.2
POET-SQLRoBERTa 79.8 (+1.7) 87.4 (+2.1) 68.7 (+1.1) 81.6 (+0.5) 59.1 (+3.9) 65.9 (+3.2) – 67.5 (+3.3)

T5-11B 83.5 85.9 71.4 84.5 – – 52.9 –
POET-SQLT5 85.2 (+1.7) 87.6 (+1.7) 71.5∗ (+0.1) 84.4∗ (-0.1) – – 57.4 (+4.5) –

Table 3: The main experimental results of different backbone models on test sets and dev sets (♡) of datasets
with or without our proposed POET paradigm. The results of POET are significantly better than the original LMs
(p < 0.05), except for those marked by ∗. POET-SQL / MathBART, POET-SQL / LogicRoBERTa and POET-SQLT5 are
pre-trained from BART-Large, RoBERTa-Large and T5-11B respectively under the POET paradigm. We verify the
performance of POET-SQLT5 on partial datasets considering our computation budget. Note the performance of
RoBERTa-Large and POET-SQLRoBERTa are evaluated on the subset of DROP where the answer is span(s).

sulting in a 2.2% EM improvement on LogiQA;
(c) POET-SQL equips popular encoder-only and
encoder-decoder models with an integrated pack-
age of reasoning skills, effectively improving their
performance on five benchmark datasets. As a high-
lighted example, POET-SQLBART obtains 11.5%
(DROP) and 21.1% (SVAMP) improvements on
EM, compared with the vanilla BART.

Since POET pre-training is carried purely on pro-
gram context (Figure 3), whereas all downstream
tasks are on natural context, our hypothesis that
reasoning capability is transferable from program
executors to NL scenarios gets verified. Another
interesting observation is that POET also shines
in giant LMs. As reflected from the results, T5-
11B obtains noticeable performance gains on both
DROP (1.7% EM) and SVAMP (4.5% EM).

5.3.2 Comparing to Previous SOTA

Baseline Setup We summarize the baseline meth-
ods in short below, and refer readers to their pa-
pers for more details. (i) On DROP, we include
two families of models for comparison: special-
ized models such as NumNet(+) (Ran et al., 2019),
MTMSN (Hu et al., 2019), NeRd (Chen et al.,
2020c), QDGAT (Chen et al., 2020a) and language
models such as GenBERT (Geva et al., 2020) and
PReaM (Yoran et al., 2021). (ii) Similarly, on
HotpotQA (Distractor), specialized model base-
lines include DFGN (Qiu et al., 2019), SAE (Tu
et al., 2020), C2F Reader (Shao et al., 2020) and

the SOTA model HGN (Fang et al., 2020). The
language model baselines consist of BERT (De-
vlin et al., 2019), SpanBERT (Joshi et al., 2020)
and ReasonBERT (Deng et al., 2021). (iii) On
TAT-QA, we adopt the official baselines, includ-
ing TAPAS (Herzig et al., 2020), NumNet+ V2
and the SOTA model TAGOP (Zhu et al., 2021).
(iv) On EQUATE, we compare our methods with
BERT (Devlin et al., 2019), GPT (Radford et al.,
2019) and Q-REAS (Ravichander et al., 2019). (v)
On LogiQA, we compare our methods with Co-
Matching Network (Wang et al., 2018c) and the
SOTA model DAGN (Huang et al., 2021).

Experimental Results Table 4 lists all experi-
mental results of baselines and our models on differ-
ent datasets. As seen, our model generally achieves
the best or second-best results over different reason-
ing skills, showing its strong performance. Mean-
while, POET that utilizes a mix of two different
programs (i.e., POET-SQL+MathBART) achieves
a slightly better performance than SQL alone.
Furthermore, compared with other reasoning-
enhanced LMs, POET-SQLBART surpasses them by
a large margin, demonstrating the effectiveness of
our proposed program execution pre-training. For
example, compared with PReasM initialized from
T5-Large, POET-SQLBART initialized from BART-
Large exceeds it by 8.3%. Finally, along with our
proposed POET framework, POET-SQLT5 tops on
the challenging benchmark DROP, revealing the
great potential of LMs on reasoning scenarios.

Dataset Models EM F1

DROP♡

Specialized Models
NumNet 64.9 68.3

MTMSN (BERT) 76.7 80.5
NeRd (BERT) 78.6 81.9

NumNet+ (RoBERTa) 81.1 84.4
QDGAT (RoBERTa) 84.1 87.1

Language Models
GenBERT (BERT) 68.8 72.3

PReasM (T5) 69.4 72.3
POET-MathBART 75.2 78.1
POET-SQLBART 77.7 80.6

POET-SQL+MathBART 78.0 80.9
POET-SQLT5 85.2 87.6

HotpotQA♡

Specialized Models
DFGN 55.7 69.3

SAE (BERT) 67.7 80.8
C2F Reader (RoBERTa) 68.0 81.2

HGN (RoBERTa) 69.2 82.2
Language Models

BERT 59.1 73.4
ReasonBERT (RoBERTa-Base) 64.8 79.2

POET-SQLBART 66.5 79.7
SpanBERT (BERT) 67.4 81.2
POET-SQLRoBERTa 68.7 81.6

POET-SQLT5 71.5 84.4

TAT-QA♡

TAPAS 18.9 26.5
NumNet+ V2 38.1 48.3

TAGOP (RoBERTa) 55.2 62.7
TAGOP (POET-SQLRoBERTa) 59.1 65.9

EQUATE

BERT 51.8 –
GPT 55.8 –

Q-REAS 60.7 –
POET-SQLBART 66.5 –

POET-SQLRoBERTa 67.5 –

LogiQA
Co-Matching Network 33.9 –

POET-LogicRoBERTa 38.9 –
DAGN (RoBERTa) 39.3 –

Table 4: The comparison of our models with previous
SOTA methods on test sets and dev sets (♡) of different
datasets. LMs used by all baselines are in Large size,
except for clarification. Bold and underlined numbers
indicate the best and second-best results, respectively.

5.4 Pre-training Analysis
In this section, we conduct pre-training analysis
with respect to (w.r.t.) each part presented in § 3 to
explore their key insights. We carry all feasible pre-
training variants of POET-SQL and POET-Math,
and then fine-tune them on DROP for performance
comparison. All results are shown in Table 5.

w.r.t. Reasoning POET expects reasoning abili-
ties of a teacher program executor overlap with the
downstream reasoning requirements to make the
execution learning transferable. Specifically, we
ablate all SQL queries invovling math operatinos
from pre-training corpus of POET-SQL, while for
POET-Math, we pre-train model to execute multi-
plication / division instead of addition / subtraction.
The unsurprisingly poor performance of POET-
SQL and POET-Math variants stresses the basic

Settings POET-SQL POET-Math

BART-Large 66.2 / 69.2 66.2 / 69.2
POET Models 77.7 / 80.6 75.2 / 78.1

w.r.t. Reasoning 67.1 / 70.4 61.2 / 64.4
w.r.t. Program 76.9 / 79.7 –
w.r.t. Program Context – 67.4 / 70.5
w.r.t. Program Executor 66.1 / 69.3 –
w.r.t. Execution Result 15.8 / 17.8 11.2 / 12.2

Table 5: The DROP EM / F1 of POET-SQLBART and
POET-MathBART with respect to each part in POET.

expectation of POET.

w.r.t. Program POET postulates that grammar
difference of programs cause minor variance of rea-
soning transferability from pre-training to down-
stream tasks, as long as their underlying reasoning
mechanisms align. To test the validity, we ran-
domly map all SQL reserved keywords to the low-
est frequency tokens in the BART vocabulary. Re-
sults suggest that even such “broken” syntax rules
hardly reduce reasoning transferability, demonstrat-
ing the generality and adaptability of POET.

w.r.t. Program Context POET emphasizes the
necessity of program context for reasoning trans-
ferability, owing to the analogy between the pro-
gram to program context and the sentence to natural
context drawn in Figure 1. To verify that, we ex-
periment with a variable-free POET-Math variant
whose program context is empty. Taking the ex-
ample of POET-Math in Figure 3, the program is
transformed into 152.0+99.0-70.3. One can see
that there is a dramatic performance drop in the
variant compared to POET-MathBART, verifying the
importance of program context.

w.r.t. Program Executor POET hypothesizes
that the acquisition of reasoning ability by models
happens at the stage of mimicing program execu-
tion, rather than langauge modeling of programs.
To verify this, we ablate the program executor in
POET-SQLBART and carry out a SQL language mod-
eling pre-training instead. Practically, we mask
each SQL query in the pre-training corpus of POET-
SQL using the strategy adopted in BART (Lewis
et al., 2020), and pre-train BART to output the
complete SQL query given the masked SQL query
and the database. The scarce performance gain
corroborates this important hypothesis of POET.

w.r.t. Execution Result POET requires execu-
tion results, i.e., the supervision provided by pro-

SQuAD MNLI QuoRef
40

60

80

100
93.3

90.8
84.9

93.2
89.6

84.7
Ta

sk
Pe

rf
or

m
an

ce
(%

)

RoBERTa-Large POET-SQLRoBERTa

Figure 4: The performance comparison between
RoBERTa-Large and POET-SQLRoBERTa on represen-
tative NLU tasks. On SQuAD and QuoRef, we compare
F1, whereas on MNLI we compare Accuracy.

gram executors, to be correct and consistent. To
explore the impact of malfunctional executors, we
perturb the pre-training corpus in variants of POET-
Math and POET-SQL by randomly pairing the ex-
ecution result of one example with the program
and program context of another example. In con-
strat with an intuitive guess that such execution pre-
training will neither help nor terribly harm models’
development of reasoning in downstream tasks, the
drastic performance decrement suggests that learn-
ing from malfunctional executors turns out to thor-
oughly inhibit models from reasoning correctly.

5.5 Language Understanding Analysis

Since the program context used in pre-training dif-
fers much from the natural context used in down-
stream tasks, a reasonable concern immediately
follows: whether POET pre-training improves rea-
soning ability at the sacrifice of natural language
understanding (NLU) ability of LMs? To inves-
tigate the concern, we evaluate POET models on
representative benchmarks without emphasis on ad-
vanced reasoning skills, also covering the task of
RC, QA and NLI.

Dataset We fine-tune POET-SQLRoBERTa on (i)
SQuAD v1.0: (Rajpurkar et al., 2016): one of
the most classical single-span selection RC bench-
marks measuring understanding over natural lan-
guage context; (ii) MNLI (Williams et al., 2018):
a large-scale NLI dataset measuring cross-domain
and cross-genre generalization of NLU. Notably,
our model is evaluated on the matched setting for
the purpose of simplicity. (iii) QuoRef (Dasigi
et al., 2019): A Wikipedia-based multi-span se-
lection RC benchmark with a special emphasis on
coreference resolution.

Implementation Details (i) On SQuAD, we cast
the span selection task as a sequence tagging prob-
lem following Segal et al. (2020). (ii) On MNLI-
matched, we train both models to perform sequence
classification on concatenated premise-hypothesis
pairs. (iii) On Quoref, we cast the span(s) selection
task as an IO sequence tagging problem follow-
ing Segal et al. (2020).

Results As can be observed from performance
comparison between POET-SQLRoBERTa and vanilla
RoBERTa shown in Figure 4, across all three exper-
imented NLU-focused datasets, POET-SQLRoBERTa

performance are almost identical from counterparts
of vanilla version. These negligible drops of per-
formance suggest that reasoning capability can be
transferred from program execution pre-training to
NL downstream tasks, without the expense of LMs’
intrinsic understanding of language.

6 Conclusion

We introduce POET, a new pre-training paradigm
for boosting reasoning capability of language mod-
els via imitating program executors. Experimental
results on six datasets demonstrate that POET can
significantly boost existing language models on
several reasoning skills, including numerical, log-
ical and multi-hop reasoning. Our best language
model under POET can reach a comparable or bet-
ter performance than state-of-the-art methods. In
the future, we hope our work could inspire more
transference of reasoning knowledge from program
executors to models.

Acknolwedgement

We would like to thank all the anonymous review-
ers for their constructive feedback.

References
Daniel Andor, Luheng He, Kenton Lee, and Emily Pitler.

2019. Giving BERT a calculator: Finding opera-
tions and arguments with reading comprehension. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5947–
5952, Hong Kong, China. Association for Computa-
tional Linguistics.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 39–48.

https://doi.org/10.18653/v1/D19-1609
https://doi.org/10.18653/v1/D19-1609

Akari Asai and Hannaneh Hajishirzi. 2020. Logic-
guided data augmentation and regularization for con-
sistent question answering. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5642–5650, Online. Asso-
ciation for Computational Linguistics.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Wen tau Yih, and Yejin
Choi. 2020. Abductive commonsense reasoning. In
International Conference on Learning Representa-
tions.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Giovanni Campagna, Agata Foryciarz, Mehrad Morad-
shahi, and Monica Lam. 2020. Zero-shot transfer
learning with synthesized data for multi-domain dia-
logue state tracking. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 122–132, Online. Association for
Computational Linguistics.

Kunlong Chen, Weidi Xu, Xingyi Cheng, Zou Xi-
aochuan, Zhang Yuyu, Le Song, Taifeng Wang, Yuan
Qi, and Wei Chu. 2020a. Question directed graph
attention network for numerical reasoning over text.
pages 6759–6768.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-
Guang Lou, and Feng Jiang. 2021. ReTraCk: A flexi-
ble and efficient framework for knowledge base ques-
tion answering. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 325–336, Online. Association for
Computational Linguistics.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020b. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026–1036, Online. Association for Computa-
tional Linguistics.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou,
Dawn Song, and Quoc V. Le. 2020c. Neural sym-
bolic reader: Scalable integration of distributed and
symbolic representations for reading comprehension.

In International Conference on Learning Representa-
tions.

Xinyun Chen, Chang Liu, and Dawn Song. 2019.
Execution-guided neural program synthesis. In Inter-
national Conference on Learning Representations.

Pradeep Dasigi, Nelson F. Liu, Ana Marasović, Noah A.
Smith, and Matt Gardner. 2019. Quoref: A read-
ing comprehension dataset with questions requir-
ing coreferential reasoning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5925–5932, Hong Kong,
China. Association for Computational Linguistics.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3:
An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer.

Xiang Deng, Yu Su, Alyssa Lees, You Wu, Cong Yu,
and Huan Sun. 2021. ReasonBERT: Pre-trained to
reason with distant supervision. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6112–6127, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang,
and Jie Tang. 2019. Cognitive graph for multi-hop
reading comprehension at scale. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2694–2703, Florence,
Italy. Association for Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa,
Josh Tenenbaum, and Armando Solar-Lezama. 2019.
Write, execute, assess: Program synthesis with a
REPL. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
9165–9174.

https://doi.org/10.18653/v1/2020.acl-main.499
https://doi.org/10.18653/v1/2020.acl-main.499
https://doi.org/10.18653/v1/2020.acl-main.499
https://openreview.net/forum?id=Byg1v1HKDB
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.emnlp-main.549
https://doi.org/10.18653/v1/2020.emnlp-main.549
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=H1gfOiAqYm
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://aclanthology.org/2021.emnlp-main.494
https://aclanthology.org/2021.emnlp-main.494
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1259
https://doi.org/10.18653/v1/P19-1259
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://proceedings.neurips.cc/paper/2019/hash/50d2d2262762648589b1943078712aa6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/50d2d2262762648589b1943078712aa6-Abstract.html

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuo-
hang Wang, and Jingjing Liu. 2020. Hierarchical
graph network for multi-hop question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8823–8838, Online. Association for Computa-
tional Linguistics.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 946–958, Online. Association for Computa-
tional Linguistics.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2019. Neural module networks for
reasoning over text. CoRR, abs/1912.04971.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. A multi-type multi-span network
for reading comprehension that requires discrete rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1596–1606, Hong Kong, China. Association for Com-
putational Linguistics.

Yinya Huang, Meng Fang, Yu Cao, Liwei Wang, and Xi-
aodan Liang. 2021. DAGN: Discourse-aware graph
network for logical reasoning. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5848–5855,
Online. Association for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Tushar Khot, Daniel Khashabi, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2020. Text modular
networks: Learning to decompose tasks in the lan-
guage of existing models. CoRR, abs/2009.00751.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training

for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 3622–3628. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main track.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021.
TAPEX: table pre-training via learning a neural SQL
executor. CoRR, abs/2107.07653.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Augustus Odena, Kensen Shi, David Bieber, Rishabh
Singh, Charles Sutton, and Hanjun Dai. 2020. Bus-
tle: Bottom-up program synthesis through learning-
guided exploration.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li,
Weinan Zhang, and Yong Yu. 2019. Dynamically
fused graph network for multi-hop reasoning. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6140–
6150, Florence, Italy. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
http://arxiv.org/abs/1912.04971
http://arxiv.org/abs/1912.04971
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/2021.naacl-main.467
https://doi.org/10.18653/v1/2021.naacl-main.467
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
http://arxiv.org/abs/2009.00751
http://arxiv.org/abs/2009.00751
http://arxiv.org/abs/2009.00751
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
http://arxiv.org/abs/2107.07653
http://arxiv.org/abs/2107.07653
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2007.14381
http://arxiv.org/abs/2007.14381
http://arxiv.org/abs/2007.14381
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/P19-1617
https://doi.org/10.18653/v1/P19-1617
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan
Liu. 2019. NumNet: Machine reading comprehen-
sion with numerical reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2474–2484, Hong Kong,
China. Association for Computational Linguistics.

Abhilasha Ravichander, Aakanksha Naik, Carolyn Rose,
and Eduard Hovy. 2019. EQUATE: A benchmark
evaluation framework for quantitative reasoning in
natural language inference. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 349–361, Hong
Kong, China. Association for Computational Lin-
guistics.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michi-
hiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure
Leskovec, and Denny Zhou. 2021. Lego: Latent
execution-guided reasoning for multi-hop question
answering on knowledge graphs. In ICML.

Michael Scriven. 1976. Reasoning. New York:
McGraw-Hill.

Elad Segal, Avia Efrat, Mor Shoham, Amir Glober-
son, and Jonathan Berant. 2020. A simple and effec-
tive model for answering multi-span questions. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3074–3080, Online. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Nan Shao, Yiming Cui, Ting Liu, Shijin Wang, and
Guoping Hu. 2020. Is Graph Structure Necessary
for Multi-hop Question Answering? In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7187–7192, Online. Association for Computational
Linguistics.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic pars-
ing to SQL queries. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1849–1864, Online. Association for Computational
Linguistics.

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram,
and Joseph Lim. 2018. Neural program synthesis
from diverse demonstration videos. In International
Conference on Machine Learning, pages 4790–4799.
PMLR.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin
Ellis, William T. Freeman, Joshua B. Tenenbaum,
and Jiajun Wu. 2019. Learning to infer and execute
3d shape programs.

Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2020. Select, an-
swer and explain: Interpretable multi-hop reading
comprehension over multiple documents. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 9073–
9080. AAAI Press.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5307–5315, Hong
Kong, China. Association for Computational Linguis-
tics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

Chenglong Wang, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Xin Mao,
Oleksandr Polozov, and Rishabh Singh. 2018b.
Robust text-to-sql generation with execution-guided
decoding. ArXiv, abs/1807.03100.

Shuohang Wang, Mo Yu, Jing Jiang, and Shiyu Chang.
2018c. A co-matching model for multi-choice read-
ing comprehension. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 746–751,
Melbourne, Australia. Association for Computational
Linguistics.

http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/2020.emnlp-main.248
https://doi.org/10.18653/v1/2020.emnlp-main.248
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
https://doi.org/10.18653/v1/2020.emnlp-main.583
https://doi.org/10.18653/v1/2020.emnlp-main.583
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
http://arxiv.org/abs/1901.02875
http://arxiv.org/abs/1901.02875
https://aaai.org/ojs/index.php/AAAI/article/view/6441
https://aaai.org/ojs/index.php/AAAI/article/view/6441
https://aaai.org/ojs/index.php/AAAI/article/view/6441
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/P18-2118
https://doi.org/10.18653/v1/P18-2118

Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu
Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and Nan
Duan. 2021. Logic-driven context extension and data
augmentation for logical reasoning of text. arXiv
preprint arXiv:2105.03659.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Ori Yoran, Alon Talmor, and Jonathan Berant. 2021.
Turning tables: Generating examples from semi-
structured tables for endowing language models with
reasoning skills. CoRR, abs/2107.07261.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2020. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In International Confer-
ence on Learning Representations (ICLR).

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. SWAG: A large-scale adversarial dataset
for grounded commonsense inference. In Proceed-
ings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 93–104, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries from
natural language using reinforcement learning. arXiv,
abs/1709.00103.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual content
in finance. CoRR, abs/2105.07624.

Amit Zohar and Lior Wolf. 2018. Automatic program
synthesis of long programs with a learned garbage
collector. CoRR, abs/1809.04682.

A POET-SQL for Integrated Reasoning

Table 2 presents seven typical SQL types and their
representative SQL programs. We believe that the
main reason SQL queries involve integrated reason-
ing is that they are complex enough to encompass
a wide variety of computational procedures. For
example, the arithmetic type covers part of the nu-
merical reasoning capability, while the nested type
roughly simulates the multi-hop procedure by re-
cursively querying information on the database.

B Dataset Details

Table 6 presents some statistics about our experi-
mental datasets. Below we introduce each dataset
in detail.

DROP A reading comprehension benchmark to
measure numerical reasoning ability over a given
passage (Dua et al., 2019). It contains three sub-
sets of questions: span, number, and date, each
of which involves a lot of numerical operations.
Unlike traditional reading comprehension datasets
such as SQuAD (Rajpurkar et al., 2016) where
answers are always a single span from context, sev-
eral answers in the span subset of DROP contains
multiple spans. The number and date answers are
mostly out of context and need generative-level
expressiveness.

HotpotQA An extractive reading comprehension
dataset that requires models to perform multi-hop
reasoning over different passages (Yang et al.,
2018). It contains two settings (i) Distractor: rea-
soning over 2 gold paragraphs along with 8 sim-
ilar distractor paragraphs and (ii) Full wiki: rea-
soning over customized retrieval results from full
Wikipedia passages. We experiment with its dis-
tractor setting since retrieval strategy is beyond our
focus in this work.

TAT-QA A question answering benchmark to
measure reasoning ability over hybrid context, i.e.,
passages and tables (Zhu et al., 2021). It is curated
by combing paragraphs and tables from real-world
financial reports. According to the source(s) the an-
swers are derived from, the dataset can be divided
into three subsets: Table, Text and Table-Text(both).

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
http://arxiv.org/abs/2107.07261
http://arxiv.org/abs/2107.07261
http://arxiv.org/abs/2107.07261
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
http://arxiv.org/abs/2105.07624
http://arxiv.org/abs/2105.07624
http://arxiv.org/abs/2105.07624
http://arxiv.org/abs/1809.04682
http://arxiv.org/abs/1809.04682
http://arxiv.org/abs/1809.04682

Dataset
Train Dev

Questions # Docs # Questions # Docs

DROP 77, 409 5, 565 9, 536 582
HotpotQA 90, 564 90, 564 7, 405 7, 405
TAT-QA 13, 215 2, 201 1, 668 278
SVAMP – – 726 726
EQUATE – – 9, 606 9, 606
LogiQA 6, 942 6, 942 868 868

Table 6: The statistics of our experimental datasets.

Models EM F1

BART-Large 66.2 69.2

POET-MathBART with 0 irrelevant variable 71.5 74.5
POET-MathBART with 10 irrelevant variables 74.6 77.5
POET-MathBART with 30 irrelevant variables 75.2 78.1

Table 7: The DROP performance with different numbers
of irrelevant variables in POET-MathBART pre-training.

EQUATE The first benchmark dataset to explore
quantitative reasoning under the task of natural lan-
guage inference (Ravichander et al., 2019). As a
test-only dataset, it requires fine-tuned models on
MNLI to perform zero-shot natural language infer-
ence tasks over quantitative statements described
in (premise, hypothesis) pairs to reach final entail-
ment decisions.

LogiQA A multi-choice reading comprehension
dataset that evaluates the logical reasoning abil-
ity, whose questions are designed by domain ex-
perts (Liu et al., 2020). It contains four types of
logical reasoning, including categorical reasoning,
disjunctive reasoning, conjunctive reasoning and
conditional reasoning.

SVAMP A challenging math word problem
dataset (Patel et al., 2021). It is designed specif-
ically to hack models who leverage spurious pat-
terns to perform arithmetic operations without true
understanding of context. We only keep addition
and subtraction problems in accordance with our
pre-training coverage.

C Variables Design in POET-Math

In the pre-training task of POET-Math, we regard
several floating-point variables as the program con-
text. These variables include necessary variables
(i.e., variables required by the program) and ir-
relevant variables. The irrelevant variables exist
to make the program context closer to the natural
context which generally contains irrelevant sen-
tences. For example, given the program a + b and

the program context a = 1; b = 2; c = 3; d =

4;, variables c and d are what we refer to as irrel-
evant variables. This is motivated by the fact that
passages are usually full of irrelevant information
regarding a specific question in NL downstream
tasks. In this section, we explore impacts on pre-
training effectiveness brought by numbers of irrel-
evant variables. Empirically, we experiment on
pre-training with 0, 10, 30 irrelevant variables. The
total length of 30 irrelevant variables approaches
the maximum input length of pre-trained LMs, and
thus we do not try more settings.

The experimental results are shown in Table 7.
As observed, (i) models can still learn numerical
reasoning during pre-training where the program
context is free from irrelevant variables, though less
effective. (ii) the setting of 30 irrelevant variables
brings BART-Large more performance improve-
ment than the setting of 10 irrelevant variables.
Considering there are plenty of lengthy passages
in the DROP dataset, we therefore hypothesize that
the noise level brought by irrelevant variables in
the program context during pre-training should be
made closer with the counterpart in the natural con-
text during fine-tuning.

D Langage Understanding Analysis

E Implementation Details

E.1 Pre-training Details
By default, we apply AdamW as pre-training opti-
mizer with default scheduling parameters in fairseq.
The coefficient of weight decay is set as 0.05 to al-
leviate over-fitting of pre-trained models. Addition-
ally, we employ fp16 to accelerate the pre-training.

POET-Math The pre-training procedure lasts for
10, 000 steps with a batch size of 512. After the
warm up in the first 2000 steps, the learning rate
arrives the peak at 3×10−5 during pre-training.

POET-Logic The pre-training procedure lasts for
5, 000 steps with a batch size of 512. After the
warm up in the first 1000 steps, the learning rate
arrives the peak at 3×10−5 during pre-training.

POET-SQL For POET-SQLBART and POET-
SQLRoBERTa, the pre-training procedure lasts for
50, 000 steps with a batch size of 512. After the
warm up in the first 5000 steps, the learning rate
arrives the peak at 3×10−5 during pre-training. To
save memory, each example in the pre-training cor-
pus could at most contains 512 tokens. For POET-

Dataset
Train Dev

Questions # Docs # Questions # Docs

SQuAD v1.0 77, 409 5, 565 9, 536 582
MNLI 392, 702 392, 702 9, 815 9, 815
QuoRef 19, 399 3, 771 2, 418 454

Table 8: POET on language understanding experiment dataset statistics.

Models Number Span Spans Date Total
Previous Systems

MTMSN (BERT) 81.1 82.8 62.8 69.0 80.5
NumNet+ (RoBERTa) 83.1 86.8∗ 86.8∗ 63.9 84.4
QDGAT (RoBERTa) 86.2 88.5∗ 88.5∗ 67.5 87.1
GenBERT 75.2 74.5 24.2 56.4 72.3
PReasM 64.4 86.6 78.4 77.7 72.3

Original LMs
RoBERTa-Large – 86.4 79.9 – –
BART-Large 63.6 79.6 74.6 62.1 69.2
T5-11B 83.2 90.2 85.8 84.9 85.8

POET Models
POET-SQLRoBERTa – 88.2 83.1 – –
POET-SQLBART 78.9 84.5 79.6 71.9 80.6
POET-SQLT5 85.2 92.4 86.6 84.4 87.6

Table 9: Breakdown of model F1 score by answer types on the dev set of DROP. Some works only report overall
span type performance (marked by *), and single-span is non-separable from multi-span performance. Bold and
underlined numbers indicate the best and second-best results, respectively.

SQLT5, the pre-training procedure lasts for 20, 000
steps with a batch size of 512. After the warm
up in the first 2000 steps, the learning rate arrives
the peak at 1×10−5 during pre-training. The maxi-
mum input length in each example is truncated to
384 tokens to increase the batch size.

E.2 Fintuning Details

We implement our models based on transform-
ers (Wolf et al., 2020), fairseq (Ott et al., 2019)
and DeepSpeed 2.

Passage Retrieval in HotpotQA Since the total
length of the original passages in HotpotQA is too
long to fit into memory, we train a classifier to filter
out top-3 passages, as done in previous work (Deng
et al., 2021). Specifically, a RoBERTa-Large model
is fine-tuned to discriminate if an input passage is
required to answer the question. The Hits@3 score
of the classifier on HotpotQA is 97.2%.

Numerical Design in DROP and SVAMP As
noticed by previous works, sub-word tokenization
methods such as byte pair encoding (Sennrich et al.,
2015) potentially undermines the arithmetic abil-
ity of models. Instead, the character-level number

2 http://github.com/microsoft/DeepSpeed

representation is argued to be a more effective al-
leviation (Wallace et al., 2019). Additionally, the
reverse decoding of numbers is proposed as a bet-
ter way of modelling arithmetic carry (Geva et al.,
2020). Therefore, we employ these design strate-
gies on DROP and SVAMP.

E.3 Fine-tuning Hyperpameters

By default, we apply AdamW as fine-tuning op-
timizer with default scheduling parameters on all
datasets. To ensure statistical significance, all fine-
tuning procedures are run with three random seeds,
except for T5-11B and POET-SQLT5 due to the
limit of computation budgets.

DROP POET-SQLRoBERTa and RoBERTa-Large
are trained with the subset of questions marked as
“span” from the DROP dataset.t Since a gold answer
may occur multiple times in the passage, we opti-
mize over the sum of negative log probability for
all possibly-correct IO sequences where each one
of gold answers is included at least once, as done
in Segal et al. (2020). The fine-tuning procedure
runs up to 25, 000 steps with a batch size of 64,
with the learning rate of 7.5×10−6. As for BART-
Large (and POET-SQLBART, POET-MathBART, the
same below) and T5-11B (and POET-SQLT5, the
same below), they are trained with the whole DROP

dataset. For BART-Large, the fine-tuning proce-
dure runs up to 20, 000 steps with a batch size as
128 and a learning rate as 3×10−5. For T5-11B,
due to the computational budget, the fine-tuning
procedure only lasts for 10, 000 steps with a batch
size of 32, and the learning rate is 1×10−5.

TAT-QA In the experiment of TAT-QA, we em-
ploy the official implementation and the default
hyperparameters provided in TAGOP 3. The fine-
tuning procedure runs up to 50 epochs with a batch
size of 48. For modules introduced in TAGOP, the
learning rate is set as 5×10−4, while for RoBERTa-
Large (and POET-SQLRoBERTa), the learning rate is
set as 1.5×10−5.

HotpotQA The fine-tuning procedure runs up
to 30, 000 steps with a batch size of 64. The
learning rate is 1×10−5. Overlong inputs are trun-
cated to 512 tokens for both RoBERTa-Large (and
POET-SQLRoBERTa), T5-11B (and POET-SQLT5)
and BART-Large (and POET-SQLBART).

EQUATE The fine-tuning procedure runs up to
20, 000 steps on MNLI with a batch size of 128
for both RoBERTa-Large (and POET-SQLRoBERTa)
and BART-Large (and POET-SQLBART), with learn-
ing rate is 1×10−5. After fine-tuning, models are
directly evaluated on EQUATE.

LogiQA In the experiment of LogiQA, we em-
ploy the open-source implementation and the de-
fault hyperparameters provided in ReClor 4 (Yu
et al., 2020) to fine-tune RoBERTa-Large (and
POET-SQLRoBERTa). The fine-tuning procedure
runs up to 10 epochs with a batch size of 24. The
learning rate is set as 1×10−5.

F Fine-grained Results

DROP In Table 9 we report model F1 scores by
question type on DROP. Comparing three POET

pre-trained models with their vanilla versions, we
observe that: (i) POET-SQLBART outperforms the
vanilla BART-large with a wide margin in all types
of questions, i.e. number (15.3%), date (9.8%),
span (around 5%). (ii) POET-SQLRoBERTa only
deals with span selection questions, and obtain
1.9%, 3.2% gain on span, spans questions, re-
spectively. (iii) For the giant POET-SQLT5, we
also observe 2% improvement on number ques-
tions, 2.2% on span and 0.8% on spans questions.

3https://github.com/NExTplusplus/TAT-QA
4https://github.com/yuweihao/reclor

These model-agnostic performance boost on DROP
reveals the extra numerical reasoning knowledge
models learned from SQL program executors.

EQUATE Table 10 presents performance break-
down by subsets of EQUATE (Ravichander et al.,
2019), where we compare POET-SQLBART and
POET-SQLRoBERTa with their vanilla versions and
previous baselines. For both models, we observe
around 10% acc improvement on the NR ST sub-
set, where numerical comparison and quantifiers
are especially emphasized. Stable performance im-
provement was also observed in both pre-trained
models on the RTE-Q subset, where arithmetics
and ranges are primary focus. Interestingly, POET-
SQLRoBERTa alone demonstrate improvement on
RedditNLI (emphasizes approximation and verbal
quantitative reasoning) subset. Performance on
other subsets are approximately comparable be-
tween POET pre-trained models and vanilla mod-
els, suggesting that POET does not harm intrinsic
abilities of language models.

TAT-QA Table 11 shows the detailed experimen-
tal results of TAGOP (POET-SQLRoBERTa). Consid-
ering that the pre-training of POET-SQLRoBERTa is
only performed on table-like texts (i.e., the flatten
sequence of databases), it is highly non-trivial for
our model to generalize to such a hybrid scenario
containing both tables and passages, again illustrat-
ing the transferability of reasoning capabilities.

Models RTE-Q NewsNLI RedditNLI NR ST AWPNLI Average

Previous Systems
MAJ 57.8 50.7 58.4 33.3 50.0 50.4
BERT 57.2 72.8 49.6 36.9 42.2 51.8
GPT 68.1 72.2 52.4 36.4 50.0 55.8
Q-REAS 56.6 61.1 50.8 63.3 71.5 60.7

Original LMs
BART-Large 68.1 76.2 65.0 53.7 49.7 62.6
RoBERTa-Large 69.3 75.5 65.6 60.1 50.7 64.2

POET Models
POET-SQLBART 72.3 75.2 64.8 70.7 49.5 66.5
POET-SQLRoBERTa 75.3 75.5 68.1 69.2 50.5 67.5

Table 10: The EM performance of different models on all subsets of the EQUATE benchmark. Bold and underlined
numbers indicate the best and second-best results, respectively.

Table Text Table-Text Total

EM / F1 EM / F1 EM / F1 EM / F1

Arithmetic 50.1 / 50.1 43.8 / 50.0 55.6 / 55.6 51.5 / 51.5
Counting 66.7 / 66.7 – / – 90.0 / 90.0 81.3 / 81.3
Spans 67.4 / 80.6 54.2 / 80.8 79.2 / 84.8 71.4 / 82.6
Span 68.4 / 68.4 51.2 / 76.0 76.2 / 77.8 61.9 / 74.6
Total 56.5 / 58.0 51.1 / 75.0 69.0 / 70.7 59.1 / 65.9

Table 11: The EM performance of TAGOP (POET-SQLRoBERTa) with respect to answer types and sources on the dev
set of TAT-QA.

