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Abstract

Structured Knowledge has recently emerged as
an essential component to support fine-grained
Question Answering (QA). In general, QA sys-
tems query a Knowledge Base (KB) to detect
and extract the raw answers as final prediction.
However, as lacking of context, language gen-
eration can offer a much informative and com-
plete response. In this paper, we propose to
combine the power of transfer learning and the
advantage of entity placeholders to produce
high-quality verbalization of extracted answers
from a structured KB. We claim that such ap-
proach is especially well-suited for answer gen-
eration. Our experiments show 44.25%, 3.26%
and 29.10% relative gain in BLEU over the
state-of-the-art on the VQuAnDA, ParaQA and
VANiLLa datasets, respectively. We addition-
ally provide minor hallucinations corrections in
VANiLLa standing for 5% of each of the train-
ing and testing set. We witness a median abso-
lute gain of 0.81 SacreBLEU. This strengthens
the importance of data quality when using au-
tomated evaluation.

1 Introduction

Question Answering (QA) has witnessed a massive
number of stupendous improvements over the past
few years which marked a new era of QA. At the
core of this significant progress is the huge leap in
the use of Pretrained Language Model (PLM). On
several benchmarks, state-of-the art QA systems
perform on par with human according to reported
evaluation metrics. However, despite remarkable
accuracy in answer detection and extraction, few
works have considered returning a verbalized re-
sponse to the user. Indeed, most of QA systems out-

puts over Knowledge Bases (KBs) are utterly bereft
of any context. To this extent, more works progres-
sively tackled the Answer Verbalization task (AV)
which consists in generating a verbalized form of
the answer. As a consequence, the user may benefit
from a more contextualized response.

Recently, there have been few techniques pro-
posed to perform surface realisation of a raw an-
swer. With the lack of paired training data, Ak-
ermi et al. (2020) investigated an unsupervised
method to obtain answer verbalizations for both
English and French languages. An initial step was
to first check whether the question marker (e.g.
Who, What) could be straightforwardly substituted
with the raw answer or not. For instance, with the
question “Who is the president of the U.S.?”, its
raw answer “Joe Biden” can directly replace the
question marker “who” with the question mark
substituted with a period. If this is not the case,
the question is segmented into chunks based on the
syntactic tree parsed with UDPipeFuture (Straka,
2018; Akermi et al., 2021). After defining the raw
answer as a new chunk, all possible permutations
of the chunks are collected. The most likely per-
mutation is identified with a PLM such as GPT2
(Radford et al., 2019). Finally, Akermi et al. (2020)
use BERT (Devlin et al., 2019) to find any possi-
bly missing function words around the raw answer
such as a, an, to, with, in etc. In spite of its ap-
pealing unsupervised mechanism, this method is
computationally expensive because of the cost of
estimating the likelihood of all (distinct) permuta-
tions. Moreover, the likelihood is computed with
potential absent words which may jeopardize the
final ranking of permutations.



Following, multiple datasets were released to
spur the community to apply end-to-end learning
(Kacupaj et al., 2020, 2021a; Biswas et al., 2021).
Kacupaj et al. (2021c) introduced VOGUE, an
end-to-end model based on a dual encoder-decoder
architecture. More precisely, the input question is
encoded with a first Transformer encoder (Vaswani
et al., 2017). On top of that, a logical form of
the question is also encoded with an additional
Transformer encoder. The logical form is a sim-
plified representation of the question, similar to a
query, inspired from Plepi et al. (2021) and Kacupaj
et al. (2021b). Taking our aforementioned question
example, its logical form is find(president,
U.S). During the decoding phase, VOGUE uses
entities placeholders1 for both the raw answer and
the subject entity to generate an abstract version
of the response. Following the previous example,
the generated verbalization would be “[ANS] is
the president of [ENT]”. In our work, we utilize a
comparable mechanism fused with large-scaled pre-
trained models to leverage efficient transfer learn-
ing.

Specifically, our contribution is twofold:

• We propose a masked answer verbalization
coupled with transfer learning to verbalize ex-
tracted answers over KBs. Placeholders are
generated instead of the correct raw answer.
This allows a better generalization and scala-
bility of the model. Then, a post-processing
step is applied which consists of replacing the
placeholder with the raw answer.

• We provide a minor revision of the VANILLA

dataset by correcting entity hallucinations in
5% of the verbalizations. We show evidence
that erroneous references may be the culprit
of 0.13% absolute median SacreBLEU drop
in evaluation and up to 0.81 absolute median
gain in SacreBLEU when trained on corrected
training data.

2 Our Approach

In this section, we present our method
based on transfer learning and masked gen-
eration. We consider an input question
X = {x1, x2, . . . , xN−1, xN} with xi the ith word
and its raw answer A = {a1, a2, . . . , aK−1, aK}
with aj the jth word of the answer2. The

1We use the term placeholder and mask interchangeably.
2The raw answer can be of multiple words.

goal is to generate a verbalized answer
Y = {y1, y2, . . . , yM−1, yM} We model
the generation of each token as a condi-
tional θ-parameterized probability distribu-
tion. More precisely, we estimate θ such that
Pθ(yi|X,A, y1, y2, . . . , yi−1) is maximized.

As mentioned in Dai and Le (2015), Howard and
Ruder (2018) and Montella et al. (2020), NLG has
significantly benefited from transfer learning and
very large PLMs (Devlin et al., 2019; Radford et al.,
2019). The generalization ability to unseen data
has tremendously improved over the last decades
due to the use of excessively large training corpora.
As a consequence, we consider two recent PLMs
for generation to leverage transfer learning:

• BART (Lewis et al., 2020) is based on a Trans-
former architecture (Vaswani et al., 2017).
More specifically, its encoder and decoder cor-
respond to BERT (Devlin et al., 2019) and to
GPT (Radford et al., 2019), respectively. Dur-
ing training, BART is pretrained with a de-
noising objective. It consists in corrupting the
input of the model (masking, reordering, etc)
and to reconstruct the original, i.e. denoised,
input.

• T5 (Raffel et al., 2020) is similar to the
Transformer-based model (Vaswani et al.,
2017) with minor changes. For instance, as po-
sitional embeddings, a single scalar is added
to the logits used for attention weights compu-
tation. Also, a simplified layer normalization
is utilized. T5 is trained on multiple tasks at
once such as question answering, language
modeling, span extraction, paraphrasing, sen-
timent analysis, etc. To do so, all text process-
ing tasks are cast in a text-to-text framework
which allows to reuse the same model, loss
function, optimizer and so on. Both input and
target are textual content or transformed as
text. Thus, for binary, numerical or categori-
cal data types, T5 maps such format to strings.
Moreover, a specificity of T5 is that the task
is informed within the input thanks to a pre-
fix, e.g. “translate English to German:” or

“summarize:”. While finetuning, it is a good
practice to reuse the same prefix as the down-
stream task for efficient transfer learning.

In order to verbalize the answer, a first step con-
sists in encoding X with the encoder part of T5 or
BART model. Then, the decoder part takes learned



representations to generate Y . In our case, a place-
holder is generated in Y which will be replaced by
the raw answer A as explained in next section.

2.1 Masked Answer Verbalization
As humans, our ability to generate a response is
independent and agnostic to our own knowledge.
For instance, given the question “What is the capi-
tal of Ghana?”, although the answer, i.e. “Accra”,
might not be known, one is still able to generate
the response “The capital of Ghana is [ANSWER]”
where [ANSWER] stands for a placeholder of the
correct raw answer. Therefore, this paradigm could
remain when modeling any question answering sys-
tem. This is a two-stage process. First, a template
of the verbalized answer is generated. Secondly,
we replace the mask with the corresponding raw
answer, i.e. a single or several entities, of the input
question. We are aware that this approach works
especially well in English, but would require adjust-
ment to other languages such as French or German
because of gender agreement. However, several
benefits can be pointed out. It alleviates the train-
ing of the model since it principally learns to gen-
erate templates. In addition, it avoids misspelling
of entities during the generation. It has been shown
that unseen entities are not handled properly by
the generative system (Ferreira et al., 2020). This
is further critical when a copy mechanism is not
applied. On top of that, using placeholders reduces
the complexity of the model by shrinking its vocab-
ulary dimension (last layer). This is also significant
regarding training time since a softmax layer is usu-
ally applied which is known to be time consuming.

3 Datasets

More and more efforts have been made to construct
and annotate new QA datasets. However, most of
proposed corpora do not include a well-formed and
informative response. In fact, no verbalization of
the retrieved answer is usually given. Only the raw
answer acts as the final prediction which puts a curb
on possible downstream generation task. To this
end, we explore newly released datasets equipped
with a natural language form of the response:

• VQuAnDa (Kacupaj et al., 2020) is based on
the Large scale Complex Question Answer-
ing Dataset (LC-QuAD). VQuAnDa provides
a set of 5000 complex questions with their
SPARQL queries and their corresponding an-
swer verbalization. A semi-automatic pro-

cess is used to derive the answer verbalization
of each question. The available templates of
the questions in LC-QuAD dataset are para-
phrased using strict rules (use of active voice,
synonyms, order rearranging, etc.) to get nat-
ural response templates. Then, a second step
consists in extracting raw answers from DB-
pedia using the SPARQL queries. In case
that the number of retrieved answers is greater
than 15, the list of answers is replaced with
a single token [answer] to avoid long se-
quences. Lastly, entities and predicates are
filled accordingly to generate the final ver-
balization. To ensure correctness, resulting
verbalization are checked manually according
to (Kacupaj et al., 2021a). There are totally
4000 and 1000 pairs for training and testing
sets, respectively.

• ParaQA (Kacupaj et al., 2021a) extends
VQuAnDa by proposing multiple verbaliza-
tions for each question. This paraphrasing
task was done using different techniques such
as back-translation. At least two verbal-
izations per questions are given, and up to
8 unique paraphrases are provided in some
cases. Thus, more pairs in training set can
be found for the same question. We record
a total of 12,637 pairs in training. Note that
the training and testing splits of ParaQA are
different than VQuAnDa.

• VANiLLa (Biswas et al., 2021) is a com-
pelling dataset due to its size. Covering more
than 300 relations, it was built using a semi-
automatic framework. First, direct questions
with single entity as answer were extracted
from the Complex Sequential Question An-
swering (CSQA) (Saha et al., 2018) and Sim-
pleQuestions3 Datasets. After clustering simi-
lar questions based on 4-grams, a template-
based verbalization of a single instance of
each cluster was manually annotated thanks
to Amazon Mechanical Turk (AMT). Finally,
a post-processing aims at using the resulting
templates to infer the verbalization for other
similar questions in corresponding clusters.
Totally, VANiLLa gathers 85,732 and 21,434
pairs for training and testing.

3Available at https://github.com/
davidgolub/SimpleQA/tree/master/
datasets/SimpleQuestions

https://github.com/davidgolub/SimpleQA/tree/master/datasets/SimpleQuestions
https://github.com/davidgolub/SimpleQA/tree/master/datasets/SimpleQuestions
https://github.com/davidgolub/SimpleQA/tree/master/datasets/SimpleQuestions


Train Test
VQuAnDa 4,000 1,000

ParaQA 12,637 1,000
VANiLLa 85,732 21,434

Table 1: Datasets Statistics

These datasets are therefore suitable for the re-
sponse generation task. Nonetheless, because of
the semi-automatic framework, these corpora are
prone to errors as we will show in Section 4.4

4 Experiments

In our experiments, we provide empirical results
on the introduced datasets in Section 3. In Section
4.2, we compare our transfer learning approach
over the existing literature using T5 and BART em-
bedded with a masking strategy. Then, we explore
the advantage of placeholders in Section 4.3. Our
inputs and outputs with and without our masking
approach are depicted in Table 2.

4.1 Training Settings

We use the pretrained BART and T5 models
from HuggingFace. For both PLMs, we use their
base models, i.e. facebook/bart-base and
t5-base configurations. The input questions
and target responses are all lower-cased. Since no
validation sets are provided regarding the official
splits, we arbitrarily set our hyperparameters
for all of our experiments and do not validate
them. We choose to finetune models on 10
epochs using a batch size of 32. We use the
cross entropy loss and Adam optimizer for
optimization. The initial learning rates are set
to 1.0 × 10−5 and 1.0 × 10−4 for BART and T5
respectively.4 For T5, we prefix each question
with the prefix “question:” as it has already been
used during T5 pretraining for question-answering.
During generation, we use a greedy decoding (no
beam search or sampling is applied). For better
reproducibility, our code is available at https:
//github.com/Anonymous1911272/
answerverbalization.

4.2 Results

Evaluation of natural language remains a critical is-
sue since it is difficult to automate. Besides, human
annotations are usually costly and time-consuming.

4We witness divergence when learning rate is set to 1.0×
10−4 for BART.

For fair comparison, we follow exactly the same
evaluation protocol and metrics as Kacupaj et al.
(2021c), using BLEU (on 4-grams) (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005)5.
Since our predicted verbalizations contain place-
holders, we replace them with the raw answers
included in the dataset. Therefore, our evaluation
does not differ between unmasked approaches. Re-
sults on VQuAnDa, ParaQA and VANiLLa datasets
are depicted in Table 3.

We can see that transfer learning methods sys-
tematically show best (bold) or second-to-best (un-
derlined) performances on all datasets. This is not
surprising as large pretraining has shown massive
improvements over standard approaches. BART
exhibits much better performances than T5 on
VQuAnDa and ParaQA. On the contrary, T5 is
slightly better on VANiLLa. We conjecture that
BART is well-fitted to map question to its answer
verbalization. Question and response usually share
similar words, but in different orders and few words
or preprosition could be missing to go from one
to another. This exactly corresponds to the denois-
ing objective on which BART has been pretrained.
Therefore, the input question can be viewed as
a noisy version of the answer verbalization from
which BART attempts to reconstruct. Regardless,
pretrained models on average results in 44.25%,
3.26% and 29.10% relative gain in BLEU over
VOGUE on VQuAnDa, ParaQA and VANiLLa re-
spectively. VOGUE nonetheless shows interesting
results despite its size and no pretraining. This
is also explained by the logical form of the ques-
tion which boils down the question to a simple
abstraction. Furthermore, we observe that the un-
supervised strategy by Akermi et al. (2020) has
strong shortcoming to compete with a basic RNN.
Their method is sensitive to the syntax and length
of the input question. The longer the question, the
worst the generation. While the verbalizations in
VQuAnDa and ParaQA are 17 tokens long on aver-
age, this might be the reason of low performances
on these datasets. Moreover, unnatural questions,
as included in VANiLLa, are not handled properly
because of the use of PLMs to gauge the likelihood
of permutations.

In the following, our interest lies in measuring
the real gain of using placeholders.

5Kacupaj et al. (2021c) average the BLEU and METEOR
of each verbalization.

https://github.com/Anonymous1911272/answerverbalization
https://github.com/Anonymous1911272/answerverbalization
https://github.com/Anonymous1911272/answerverbalization


Input Output
w/o mask Who is the president of the U.S.? [SEP] J. Biden The president of the U.S. is J. Biden.
w/ mask Who is the president of the U.S.? The president of the U.S. is [ANSWER].

Table 2: Examples of model input and output with and without placeholders. During evaluation, the placeholder is
replaced with the raw answer J. Biden.

BLEU ↑ METEOR ↑
Models VQuAnDa ParaQA VANiLLa VQuAnDa ParaQA VANiLLa
RNN✝ 15.43 22.45 16.66 53.15 58.41 58.67

Transformer✝ 18.37 23.61 30.80 56.83 59.63 62.16
Akermi et al. (2020) 22.70 18.25 18.30 48.04 44.27 48.27

VOGUE✝ 28.76 32.05 35.46 67.21 68.85 65.04
T5 (masking) 39.07 30.62 45.87 67.70 59.81 67.15

BART (masking) 43.90 35.57 45.69 71.92 65.40 66.71

Table 3: Answer Verbalization Results. (✝) results are taken from Kacupaj et al. (2021c).

BLEU ↑ METEOR ↑ SacreBLEU ↑ Chrf++ ↑ TER ↓
T5 w/o mask 30.06 58.39 35.25 56.44 52.67

w/ mask 39.07 67.70 58.26 73.87 42.45
BART w/o mask 33.93 61.43 39.19 59.26 49.22

w/ mask 43.90 71.92 60.85 75.45 35.36

Table 4: Results with and without placeholders on VQuAnDa.

BLEU ↑ METEOR ↑ SacreBLEU ↑ Chrf++ ↑ TER ↓
T5 w/o mask 25.55 53.55 33.49 53.84 56.04

w/ mask 30.62 59.81 47.01 66.39 49.87
BART w/o mask 30.56 57.80 37.61 56.95 52.41

w/ mask 35.57 65.40 50.70 68.86 43.50

Table 5: Results with and without placeholders on ParaQA.

BLEU ↑ METEOR ↑ SacreBLEU ↑ Chrf++ ↑ TER ↓
T5 w/o mask 42.91 64.56 53.33 70.19 44.41

w/ mask 45.87 67.15 57.67 73.40 41.59
Bart w/o mask 43.14 65.13 54.16 71.36 43.99

w/ mask 45.69 66.71 57.41 73.07 42.00

Table 6: Results with and without placeholders on VANiLLa.

4.3 To Mask or not to Mask?

In this section, we investigate the impact of using
a masking mechanism. We conduct a comparative
study between masked and non-masked generation.

To do so, we finetune BART and T5 with the
same hyperparameters as previous experiments.
For non-masked generation, the input question is
concatenated with its raw answer. To differentiate
question and answer, we make use of the separa-
tor token [SEP]. With this setting, models should
learn to combine input question and input answer

accordingly to form a grammatically correct ver-
balization. We adopt additional evaluation met-
ric, i.e. SacreBLEU (Post, 2018), Chrf++ (Popović,
2015) and TER (Snover et al., 2006), yielding much
fine-grained analysis. The experiment results for
VQuAnDa, ParaQA and VANiLLa are shown in
Table 4, 5 and 6.

On the three datasets, we observe that using a
placeholder leads to systematic gain for all reported
metrics. More importantly, the gap can be consid-
erably significant when masking the raw answer.
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Figure 1: Tuning proportion of training data

Test Set
raw corrected

T5 w/o mask 53.33 53.45
w/ mask 57.67 57.81

BART w/o mask 54.16 54.30
w/ mask 57.41 57.16

Test Set
raw corrected

T5 w/o mask 52.72 53.58
w/ mask 57.48 58.23

BART w/o mask 54.96 55.81
w/ mask 58.36 59.13

Table 7: SacreBLEU scores of T5 and BART trained on raw VANiLLa (left) and corrected VANiLLa (right)

For T5 and BART, we note 23.01%, 13.52%, 4.34%
and 21.56%, 13.09%, 3.25% absolute gain in Sacre-
BLEU for VQuAnDa, ParaQA and VANiLLa re-
spectively. Thus, generating a more abstract ver-
balization alleviates the learning. Following, we
inspect the effect of the size of training set. We
thereby finetune BART and T5 on different (ran-
dom) proportion of training data. We report Sacre-
BLEU scores for each portion of training data in
Fig. 1. At first glance, the gap between masked
and non-masked generation remains very distinc-
tive despite using less training data. We remark
for T5 and BART about 23.09%, 13.81%, 3.44%
and 21.65%, 13.00%, 3.40% absolute gain on av-
erage in SacreBLEU on VQuAnDa, ParaQA and
VANiLLa while tuning amount of data fed to mod-
els. We observe that both masked and unmasked
strategies keep increasing performances when new
samples are given. Contrary to expectation, despite
the use of placeholder, masked generation keeps
benefiting of some significant performance leaps.
For BART on VQuAnDa and ParaQA, SacreBLEU
reaches a limit with only 40% of the training data

in both configurations. On VANiLLa, models show
much more variance, but a positive trend remains
overall.

4.4 References are not Innocent

Semi-automatic dataset construction is a conve-
nient yet effective technique to automatically gener-
ate sizeable corpora. Few handcrafted annotations
are needed as initial seed. However, resulting sam-
ples are highly prone to errors or not natural. This
remains a major drawback in the NLG community
where the low quality or diversity of the available
data jeopardize comparison between approaches.
Within the VANiLLa dataset, we particularly re-
veal some verbalizations where the subject entity
of the question differs with the subject entity of
the reference. For example, given the question

“Which sex does Doris Miller belong to?”, the as-
signed reference is “Sterjo is a male”, with “Sterjo”
a hallucinated entity, which should be corrected
with “Doris Miller”. Those hallucinated entities
in gold references especially occur with specific
and redundant entities (e.g. “Sterjo”). We assume



the semi-automatic pipeline to be the culprit of
such mismatch. Fortunately, those errors can be
corrected automatically since the subject entity of
each question is explicitly inquired in the origi-
nal dataset. We identified 12 repeated hallucinated
entities over the whole training set of VANiLLa.
We thus interchange erroneous entities with correct
ones. This stands for 5% for each of the training
and testing set. The quality and diversity of refer-
ences was proved to be at the core of variations of
automated metrics outcomes (Freitag et al., 2020).
Errors in references directly jeopardize resulting
performances of models. Indeed, good predictions
might be rated as bad quality while being correct.
Furthermore, automatic metrics are critically sen-
sitive to any changes in chosen words in target
verbalization. We hence investigate the shift in re-
ported results with corrected references. Precisely,
we finetune T5 and BART with same hyperparam-
eters as previously mentioned in Section 4.1. We
train and evaluate models on the original VANiLLa
dataset (“Raw”) and the corrected version (“Cor-
rected”). The SacreBLEU scores are given in Table
7.

With only 5% of corrections in both training
and testing sets, we record small improvements in
SacreBLEU. Although the increases are relatively
insignificant, those results clearly indicates that the
quality of the references is crucial to precisely as-
sess models performances. More and more works
are competing in improving those metrics. Several
contributions in generation considered slight im-
provements as predominance of their approaches
over previous methods. However, we show in Ta-
ble 7 that evaluating models on a corrected version
lead to different results that are not systematically
better. In contrast, when trained on much higher
quality samples, results on corrected testing exam-
ples exhibits more important gain as seen in Table
7. The absolute median gain reaches 0.81 Sacre-
BLEU with a cleaner training set while barely 0.13
with the standard training set. As a consequence,
it is hard to compare and to draw any conclusions
between models on noisy datasets. It is then im-
portant to raise awareness toward automatic dataset
construction.

5 Conclusion

We proposed to verbalize answers usually returned
by any question-answering system from a struc-
tured knowledge base. We combined the ad-

vantages of transfer learning and masked gener-
ation. We compared our strategies with and with-
out masks using T5 and BART. We showed that
using massively pretrained models with answer
placeholders alleviates the learning and led to un-
precedented results on VQuAnDa, ParaQA and
VANiLLa datasets. Furthermore, we revealed
multiple redundant entity hallucinations in the
VANiLLa dataset. By automatically correcting 5%
of them, we observed shifts in performances. This
further demonstrates the limitation of automatic
metrics when references are not reliable.
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