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Abstract

Neuro-symbolic reasoning has recently seen a
revival as a promising way to bridge the gap
between deep learning models that manipulate
continuous spaces and the symbolic represen-
tations. Despite its promise, the term “neuro-
symbolic” remains nebulous and is used in var-
ious contexts, from systems that rely on having
a rule-based sub-component to systems trained
end-to-end using techniques like reinforcement
learning. In this work, we conduct a survey of
its various interpretations amongst researchers
in the natural language processing (NLP) com-
munity along with a survey of prior work that
focuses on neuro-symbolic methods. We posit
that neuro-symbolic models are a host of tech-
niques that allow dense continuous representa-
tions to be informed by more abstract discrete
representations. Our work serves as a bird’s eye
view of this promising topic that opens avenues
for future work.

1 Introduction

Deep Learning has achieved tremendous success
in a wide range of problems including game-
playing (Silver et al., 2017; Vinyals et al., 2019),
language understanding (Chowdhery et al., 2022;
Brown et al., 2020), visual reasoning (Zellers et al.,
2022; Yang et al., 2021; Radford et al., 2021), gen-
erative modeling (Ramesh et al., 2021; Trinquier
et al., 2021), and code generation (Chen et al.,
2021; Li et al., 2022).

Despite these successes, several key concerns re-
main. First, deep learning systems lack explainabil-
ity by design (Joshi et al., 2021; Danilevsky et al.,
2020), making it difficult to contextualize and inter-
pret their decisions. Second, deep learning systems
tend to be data and compute hungry (Thompson
et al., 2020), often requiring data and compute that
is only feasible in large industrial settings. For
example, GPT-3 (Brown et al., 2020) was trained
on 45TB of data (≈ 500 billion tokens). Third,

Figure 1: A characterization of neuro-symbolic meth-
ods: continuous neural representations are grounded in
symbolic structures.

despite impressive performance on tasks that fun-
damentally require efficient pattern matching, even
large models struggle in areas that need a human-
like understanding of the world like commonsense
reasoning (Marcus, 2021) or detecting toxic con-
tent (Hovy and Prabhumoye, 2021).

In the light of these shortcomings, there is now a
growing interest in neuro-symbolic reasoning sys-
tems, which aim to endow deep learning systems
with symbolic reasoning capabilities as a potential
way to bridge these gaps (Garcez and Lamb, 2020;
Sarker et al., 2021a; Hamilton et al., 2022; d’Avila
Garcez et al., 2019; Raedt et al., 2019; Sarker et al.,
2021b). A key promise of neuro-symbolic systems
is grounding continuous neural representations in
discrete symbolic representations, with the hope
that neural networks leverage discrete representa-
tions for improved performance.

The popularity of neuro-symbolic reasoning has
led to a large body of work that seeks to leverage
neuro-symbolic techniques (Kramer, 2020; Sarker
et al., 2021a). Additionally, as avenues of applying
neuro-symbolic reasoning are explored, the exact
techniques used to make a system neuro-symbolic
are naturally diverging to adapt to new domains
and problem settings. Such proliferation has made
it challenging to precisely characterize what con-
stitutes neuro-symbolic reasoning. For instance,



Figure 2: The word cloud is composed of words that were used by respondents when describing neuro-symbolic
reasoning. This displays the contexts within which neuro-symbolic AI is understood.

neuro-symbolic techniques have been used in the
context of controlling model output (Li et al., 2020;
Chen et al., 2020c), leveraging external knowledge
(Liang et al., 2018), enforcing certain constraints
on the learning method (Demeter and Downey,
2020), and reasoning over graphs (Lamb et al.,
2020; Marino et al., 2021). This is in stark con-
trast with other terms in the field like deep learning,
which have a standard usage (i.e., systems that
leverage stacked neural networks). The broad in-
terpretation of neuro-symbolic reasoning as a way
of combining symbolic representations with neural
networks (d’Avila Garcez et al., 2019) is partly the
cause, as this leaves room for a lot of interpretation.

In this paper, we take the first steps towards un-
derstanding the central theme in the large body
of neuro-symbolic reasoning research. The pri-
mary goal of this work is not to come up with a
strict definition of neuro-symbolic reasoning. In-
stead, we want to identify conditions that charac-
terize a work as neuro-symbolic. We believe that
such an operational definition can help practitioners
and researchers better understand existing neuro-
symbolic reasoning research, and identify future
avenues.

Our approach relies on a survey of researchers
and recent work in neuro-symbolic reasoning.
Specifically, we conduct a survey of NLP practi-

tioners at academic institutions and industrial labs
and ask them to define neuro-symbolic reasoning.
Additionally, we curate papers from the last 5 years
that mention neuro-symbolic reasoning in the title
and distill a central theme that unifies these works.

We find that while practitioners diverge in their
understanding of neuro-symbolic reasoning, align-
ment of continuous representations learned by deep
neural networks with the discrete world the net-
works aim to reason about is a key theme. From
our survey of papers with neuro-symbolic reason-
ing in the title, we find neuro-symbolic reasoning
approaches view symbolic representations as a way
to constrain and guide continuous representations
of deep models for solving a task. An overview of
our findings from the human and literature survey
is shown in Figure 1.

The contributions of this paper are as follows:

• We collect a survey about how NLP re-
searchers interpret the term neuro-symbolic,
and we survey the current neuro-symbolic ap-
proaches that have been applied to NLP tasks.

• We distill an operational definition of neuro-
symbolic reasoning as a way to guide con-
tinuous representations in neural networks to
leverage relationships that exist in abstract dis-
crete representations.



2 Survey of Interpretations

To gauge the interpretation of the term “Neuro-
symbolic”, we surveyed 25 graduate students, pro-
fessors, and research scientists working in the field
of NLP, asking them to define the term neuro-
symbolic reasoning. We also asked respondents
to rate their familiarity with the term on a scale of
one (“never heard of the term”) and ten (“coined
the term”). Figure 3 shows a histogram of the confi-
dence ratings. All participation was voluntary, and
participants were fairly compensated.

From the survey, we find multiple common
themes amongst the responses that are valuable
for characterizing how practitioners understand
“Neuro-symbolic” methods. These are presented
in Fig. 4, and are summarized next. All the
anonymized responses are included in the Ap-
pendix.

2.1 Key findings

All respondents note that neuro-symbolic tech-
niques use some combination of neural networks
and symbolic representations. However, respon-
dents that are more familiar with the term highlight
other aspects. These include having symbolic
operations applied over discrete symbols, such
as functions. Others note that the symbols are a
means of adding information to neural networks,
and some note that symbols (such as logical
rules) are used to constrain the outputs of the
neural networks. Lastly, several responses suggest
that neuro-symbolic reasoning is motivated by
processes in the brain, specifically referring to
the utilization of symbols in human cognitive
processes. The existence of multiple hypotheses
as to how this occurs contributes to a diverse set
of interpretations for “Neuro-symbolic” methods.
Specifically, we find the following trends amongst
the responses.

Figure 3: Self reported familiarity of respondents

Figure 4: The table displays the percent of responses
from each group that refer to different aspects of neuro-
symbolic approaches, and responses could contain mul-
tiple aspect aspects. These responses suggest a broad
understanding of what neuro-symbolic techniques en-
tail.

Key aspects Multiple respondents identify the
following as key aspects of neuro-symbolic reason-
ing:

• Operations over symbols: Neurosymbolic ap-
proaches often incorporate discrete operations
such as mathematical operations or functions,
enabling them to execute complicated opera-
tions without having to learn them.

• Addition of knowledge: Knowledge bases
store symbolic information that is integrated
with neural networks in some neuro-symbolic
techniques.

• Addition of Constraints: Symbolic structures
such as grammars have constraints that they
need to fit. Neural networks can be modified to
work in such constrained environments.

Symbolic representations From the survey, we
observe that all responses note that neuro-symbolic
techniques use some combination of neural net-
works and symbolic representations. We interpret
symbolic representations to be any discrete rep-
resentation, including natural language (Schuetze,
2016). However, typically symbolic representa-
tions refer to the representations that are more struc-
tured than text.

Anthropomorphism Several responses suggest
that neuro-symbolic reasoning is motivated by pro-
cesses in the brain or refer to human thinking as
motivation, specifically to the concept of humans
thinking with symbols. This hints that several ex-
perts believe symbolic transformation might be im-
portant for building a more robust AI.



Familiarity vs. knowledge As expected, the typ-
ical response shifts from being vague (something
to do with human-like thinking) to a more specific
(introducing constraints, adding knowledge). The
exact distribution is displayed in Fig. 4. Note
again that the respondents were experts (graduate
students and professors) working in NLP.

The diversity of responses shows that there is a
growing need to study the exact connotations of
the term. We hope that our work takes the first step
towards this goal. Towards this end, we surveyed
papers that mention neuro-symbolic reasoning in
the title.

3 Characterization

The responses from the survey in Section 2 indicate
that neuro-symbolic reasoning approaches seek to
infuse neural networks with symbolic information.
To understand how this fusion is operationalized,
we survey research associated with neuro-symbolic
reasoning in the last five years and distill a unifying
theme.

Sourcing papers Neuro-symbolic reasoning has
a long history, with roots in logical program-
ming (Newell and Simon, 1956) and the emergence
of logical and algebraic programming languages
for symbolic manipulation such as Prolog (Warren
et al., 1977), Lisp (Winston and Horn, 1986), and
MACSYMA (Martin and Fateman, 1971).

However, as we aim to understand neuro-
symbolic reasoning approaches in the context of
deep learning, we restrict ourselves to works that in-
tegrate neuro-symbolic reasoning with deep learn-
ing with a special focus on papers related to NLP
tasks. We first identify all papers that include the
term “symbolic” in the title and were published in
ACL, NAACL, EMNLP, ICML, NeurIPS, ICLR, IJ-
CAI, COLING, EACL, AACL, UAI, AISTATS, or
ECML (popular machine learning and natural lan-
guage processing conferences) between the years
of 2016 and 2021. This collection resulted in 126
papers. Next, short papers, papers unrelated to NLP
tasks, and papers that did not use neural networks
were discarded. In the end, our literature survey
focuses on 22 papers in depth and mainly deal with
non-artificial data sets.

Summary of findings We find in our survey that
while the exact implementation of neuro-symbolic
reasoning works varies, a key element in these
works is an infusion of more information about

the world into the representations learned by deep
neural networks. This alignment is achieved by a
combination of data structures (e.g., Graph) and
rules (e.g., programs). We summarize this in Defi-
nition 1.

Definition 1 Neuro-symbolic methods are a
family of approaches that align continuous
representations learned by neural networks
with the discrete symbols they reason about.

Further, the distinction between symbolic and
neural AI is not defined by a fixed set of rules.
Instead, we find that all neural methods use both
neural and symbolic representations; they manipu-
late discrete symbols (characters, words, text, BPE,
audio signals, images, video frames, etc.) and are
aimed at generating discrete symbols as the output.
However, how these systems learn, and the degree
to which these systems are aware of the semantics
of the symbols differentiates them from each other.
This difference is precisely the one we leverage in
this work to compare and contrast recent works in
neuro-symbolic reasoning.

3.1 Promises from Literature
From the literature review, we also observe that
neuro-symbolic models elicit positive characteris-
tics that address common limitations of deep learn-
ing models. These include the following properties.

• Robustness One limitation of deep learning
is the difficulty of correcting mistake as these
models need to be retrained with new data. By
modifying knowledge bases that are integrated
with neuro-symbolic models, the models can
address unseen domains. (Verga et al., 2021;
Yi et al., 2018; Arabshahi et al., 2021).

• Explainability Intermediate symbolic results
in neuro-symbolic models can be observed by
practitioners, and provide an explanation for a
model’s behavior, making them easier to work
with (Bennetot et al., 2019; Stammer et al.,
2021; Sarker et al., 2021b).

• Compositionality Neuro-symbolic models
will often use an iterative approach, where
they will make multiple passes, with access
to previous outputs. This allows them to com-
bine more basic outputs together to create a
more complicated and meaningful solution
(Chen et al., 2020c; Liang et al., 2017; Vedan-
tam et al., 2019).



In the next three sections, we explore the differ-
ent implementations of these approaches. Specifi-
cally, we arrange the literature by the type of canon-
ical symbolic structure that is used: Graphs, Tables,
and Logical rules.

4 Graphs

Graphs are a ubiquitous data structure that store
information about nodes and the connections be-
tween them. In general, a graph can be interpreted
as a store of (object 1, relation, object 2) triplets,
where an edge of type relation connects nodes rep-
resenting object 1 and object 2 (Lamb et al., 2020).
They are typically used in neuro-symbolic systems
to better encode exact relationships between ob-
jects or events, and can be leveraged to obtain better
representations across all of the nodes.

In the simplest form, neuro-symbolic approaches
utilize graphs as a collection of these fact triplets
while more advanced applications exploit the rich
structure of graphs and can construct chains from
such triplets. By directly retrieving triplets from a
knowledge base, neuro-symbolic approaches can
leverage discrete relationships encoded within the
triplets without having to learn them. Verga et al.
(2021) use such an approach in order to improve
question answering. They use a language model
that queries a knowledge base based on a question
by identifying a subject and relationship that the
question asks about. For example, if asked “Where
was Charles Darwin born?”, they would query the
table with <Charles Darwin, born_in>, and find
<Charles Darwin, born_in, England> stored in the
knowledge base. The question is projected into a
joint vector space with the <subject, relationship>
pairs from the knowledge base triplets, where the
selected pair is used to answer the question. This
allows a model to be more robust to new domains
as knowledge base triplets from other domains can
be added to the knowledge base without retraining
the model, and it leverages them to answer ques-
tions. A similar approach is used by Moghimifar
et al. (2021) to retrieve knowledge base triplets,
while Ma et al. (2019) attend to a set of retrieved
knowledge triples (and not just a single triple) to
improve the task of question answering. Finally,
Liang et al. (2017) generate code that processes a
set of triplets.

Another set of approaches operates on a chain of
such tuples, or equivalently, a path from the graph.
This allows for models to combine multiple smaller

relationships within a knowledge base together. As
a representative approach, Kang et al. (2018) use a
knowledge base for the task of scientific entailment
(verifying if a fact is supported by a knowledge
base). Since multiple scientific facts entail infor-
mation that is not explicitly stated, they first break
down scientific hypothesis into sub-facts that must
be true to support the hypothesis. Then, they evalu-
ate each sub-fact corresponding to the knowledge
base to verify its validity, retrieving triples based
on three similarity measures. They include a neural
entailment module that computes whether a sub-
fact is entailed in a knowledge base triplet using
attention. This allows them to evaluate whether a
knowledge base supports a hypothesis by creating a
chain of supporting triplets. Arabshahi et al. (2021)
uses a similar approach where they store logical
rules in a knowledge base and back-chain them
using an LSTM to detect what assumptions are
made by a statement (natural language inference)
(Ebrahimi et al., 2021; Mota and Diniz, 2016).

Complete graph structures are also used in neuro-
symbolic approaches, typically using Graph Neu-
ral Networks or GNNs (Lamb et al., 2020; Al-
shahrani et al., 2017; Cranmer et al., 2020; Duman-
cic et al., 2019). GNNs learn vector representations
for nodes and links between the nodes. Marino et al.
(2021) incorporate graph neural networks for vi-
sual question answering tasks. They extract objects
in the image and a question and use a knowledge
base to form links between the extracted objects,
forming a graph. After applying a graph neural
network on the graph, they then apply logistic re-
gression to the node representations to find a con-
tinuous representation of the graph used to arrive
at a final answer to the question (Kirk and Laird,
2019; Yilmaz et al., 2016). Shi et al. (2020) use a
similar approach, using Graph attention networks
in an intermediate representation for the task of
table-based question answering. Similarly, Liang
et al. (2018) use image regions to find weights for
nodes. Then they form a graph using the nodes
and a knowledge base, and improve node repre-
sentations based on neighboring nodes, leading to
better representations of the original features. The
symbolic representations allow neighboring nodes
to improve the individual node representations, im-
proving the original image’s representation.

Finally, some approaches use neural networks to
create graphs. Here the neural networks are trained
on a knowledge base, and when given a node, they



predict the following link and node within a graph.
For example, Hwang et al. (2021) address the task
of commonsense question answering by generating
a graph based on the context given in a question.
First, they train a neural network (COMeT) on a
knowledge graph (Atomic) that stores triples. To
answer questions, they feed the provided situational
context as an entity along with the question, which
becomes the relation. This process is continued to
extend the existing graph. Lastly, they compare the
possible answers with the generated nodes to select
an answer. Feblowitz et al. (2021) propose a simi-
lar approach using a language model that is trained
on previous business scenarios to generate a graph
of implications from a particular business scenario.
This allows neural networks to be grounded in sym-
bolic triplets, thus leveraging the ontology stored
within the symbolic representations.

5 Tables

Tables store discrete representations of objects in
a structured manner, allowing their use as interme-
diate symbolic representations. Further, discrete
operations can be applied over the tables, allowing
for consistent and explainable computations. They
are useful when handling multiple objects with sim-
ilar and task-relevant characteristics. While tables
have less defined relationships than graphs, they
typically specify object properties more explicitly,
allowing for neural components to learn their se-
mantics.

Tables are not only used as information stores
but are also used as an abstraction to add structure
to input for efficient reasoning. For instance, Yi
et al. (2018) extract a table of 3d shapes from an
image for visual question answering. An encoded
question is used to generate SQL-like code over
the extracted table. The SQL code (which might
contain operations such as filtering and counting),
when executed, derives the answer from the Ta-
ble. Other neuro-symbolic approaches also ground
visual representations in tabular structures (Jiang
and Ahn, 2020; Alirezaie et al., 2018). Mou et al.
(2017) explore a more conventional use of tables
as entity stores and encode the rows and columns
to be used in a neural network that retrieves cells
(properties of entities) directly from the table. Sim-
ilarly, Shi et al. (2020) use tables extracted from
Wikipedia (TABFACT) for fact verification, and
linearize them before feeding to BERT (Chen et al.,
2020a).

Zellers et al. (2021) propose a nontraditional
application of using tables for the task of com-
monsense question answering and text generation.
They use tables to store a representation of the envi-
ronment at different time steps, containing objects
and their characteristics such as whether a stove
is hot. The table also stores labeled actions that
were applied to the environment and caused the
environment to transition from one state to another.
A neural network is then trained to learn how ac-
tions cause transitions within the table. This neural
network is then embedded into a language model
for a downstream task, allowing for the symbolic
transitions to be leveraged by the language model.

6 Logic Rules

Functions and logic are symbols that represent dis-
crete operations and discrete relationships. Ground-
ing neural representations in these symbols allow
them to organize the symbolic manipulations, al-
lowing them to leverage more abstract concepts
(Belle, 2020). For example, first-order logic can
restrict the output of a neural network to a speci-
fied grammar using Grammar models, which can
then be evaluated as a symbolic expression (Li
et al., 2020). Programs can also be generated
to parse over external symbolic structures such
as a knowledge base or text. Lastly, some ap-
proaches learn functions in the form of neural net-
works, breaking down the problem into simpler
sub-problems. These approaches are typically used
in neuro-symbolic systems when a task relies on
a set of known procedures or there exists a set of
constraints (e.g., grammars) within a system (Belle,
2020). By combining multiple more basic logic
operations, such systems can create compositoinal
results.

First order logic expressions combine language
expressions with a structured syntax that can be
manipulated by a deductive system while retain-
ing their semantics. An example is presented in
Table 1. When used in neuro-symbolic systems,
they can be add structure to complex data when
extracted from images and texts (Dai and Muggle-
ton, 2020; Tsamoura and Michael, 2020). For the
task of visual question answering, Amizadeh et al.
(2020) extract object visual features from an im-
age, and use them to determine the objects, their
attributes, and relationships that are then encoded
into a first-order logic statement. After parsing
a question into a first-order logic statement, they



FOL Formula F (X,Y ) = ∃X,∀Y : Sky(X) ∧Higher(X,Y )

Text Explanation There exists a sky above all objects

Table 1: This is an example of a first-order logic expression. More specifically, the first-order logic formula says
that there exists an X , such that for all Y , X is a sky, and X is above Y (Amizadeh et al., 2020).

then evaluate the two statements together to find
an answer. Similarly, Stammer et al. (2021) gener-
ate first-order logical explanations based on neural
activations, improving the explainability of visual
question answering models. Alternatively, Elder
et al. (2019) improve the table-to-text task by gen-
erating an intermediate first-order logic representa-
tion, and Arabshahi et al. (2021) create a theorem
prover by restricting outputs from a neural network
to logic statements stored in a knowledge base and
chain them together to create a proof (Rocktäschel
and Riedel, 2016). Xiao et al. (2017) address se-
mantic parsing by restricting RNN outputs to those
consistent with a context-free grammar. Other sim-
ilar approaches exist aiming to generate formulas
and other high-level representations to fit noisy data
(Udrescu et al., 2020; Kramer, 2020; d’Ascoli et al.,
2022).

Generated programs are also often used to pro-
cess symbolic information. To address the task
of reading comprehension (answering questions
about a given text), Chen et al. (2020c) generate a
program that answers a question by processing a
text. They use an encoder-decoder model to con-
vert a passage and question into a program that
can be applied to a text passage to obtain the an-
swer. This makes the model more compositional,
answering more complicated questions about the
passage. While this approach generates a program
that is applied to a passage, it is more common to
parse a table using the program (Parisotto et al.,
2017). Shi et al. (2020) generate a lisp-like expres-
sion based on a query that gets executed against
a table to verify whether the query is correct, and
when answering questions about a table Mou et al.
(2017) generate a program that selects a cell within
a table to answer the question. Similarly, Mao
et al. (2019) and Yi et al. (2018) address the visual
question answering task by extracting tabular in-
formation from images and generating programs
from the questions to parse those (Li et al., 2020).
Lastly, Liang et al. (2017) generate a program that
manipulates knowledge base triplets and stores in-
termediate results to improve on compositionality
of the programs. Other tasks where program gen-

eration is used include game playing, instruction
generation, planning, and image generation (Asai
and Fukunaga, 2018; Asai and Muise, 2020; Chen
et al., 2020b; Andersen and Konidaris, 2017; Fein-
man and Lake, 2021).

Lastly, other approaches aim to simplify the com-
plexity that a neural network needs to learn by
breaking down a task into sub-tasks that are solved
by separate modules. For example, to improve
the task of text generation, Demeter and Downey
(2020) create classes of words, where the primary
language model generates class tokens in place of
cities and dates, and other micro models replace
the class tokens with the exact cities and dates that
are correct for the context. The language model
does not need to learn the relationships associated
with specific classes as they can be noisy. Instead, a
separate micro model can learn them without learn-
ing other aspects of the modeling language. When
addressing the task of visual question answering,
Vedantam et al. (2019) also create separate neural
modules that can solve sub-tasks. Based on a ques-
tion, these modules are arranged in a manner where
outputs from one module are sent into another, as
functions within a program. This way, the differ-
ent modules learn specific processes used when
answering questions about images and are not af-
fected by other sub-tasks. Other approaches also
integrate preexisting code, simplifying the task that
neural components need to learn and often use re-
inforcement learning (Anderson et al., 2020; Inala
et al., 2020; Le-Phuoc et al., 2021).

7 Discussion

Limitations Our approach contains limitations
that allow us to deconstruct the different aspects
in neuro-symbolic reasoning into a simple charac-
terization. These include passing over technical
implementation details, clustering topics together,
evading a concrete definition that focuses on a spe-
cific interpretation of the term, and excluding the
cognitive science motivation for the topic. To re-
tain a simple characterization, we overlook some
nontrivial aspects to the approaches’ success. For
example, some approaches include novel ways of



either storing symbolic information or allowing
gradients to backpropagate between symbolic and
neural components. While it is necessary to under-
stand these details, they are often model-specific
and require a comprehensive description of the
model to be fully appreciated. Secondly, we do
not distinguish between topics when characteriz-
ing neuro-symbolic models. While these models
differ amongst domains, we do not explore this as
we aim to characterize neuro-symbolic models as
a whole. Also, while we focus our literature re-
view on models related to more recent NLP tasks,
we find that the extracted characterization carries
over to all models. Next, some practitioners argue
that our characterization does not pinpoint the key
promise in neuro-symbolic approaches. However,
we intentionally keep the characterization broad
as we find that there is a variety of interpretations
for neuro-symbolic methods, and we aim to create
a description that applies to all of them. Lastly,
we find that a key contributor to the popularity of
neuro-symbolic methods is their consistency with
symbolic manipulation in the brain. While we ac-
knowledge this, we do not focus on this aspect in
our characterization as we find that the literature
discusses the benefits of these approaches that do
not stem from the neuroscience parallel (Srikant
and O’Reilly, 2021).

Conclusion In this work, we observe a broad in-
terpretation of what neuro-symbolic approaches
entail, aiming to better characterize the term. We
first conduct a survey of experts to understand how
practitioners interpret the term, and then survey
papers to better understand how these approaches
are implemented. While all of these approaches
aim to embed abstract information from structured
symbolic data into neural networks, practitioners in-
terpret neuro-symbolic AI in a more specific scope
that varies amongst them. In a research landscape
dominated by extremely large language models,
neuro-symbolic reasoning approaches might be the
key to developing effective and efficient learning
machines.
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A Survey Responses

Anonymized survey responses are included in Ta-
bles 2 and 3.



Response Familiarity
In my opinion: *anything* that combines a neural model and a "program" in a synergy
that makes the combined model better than any of the two components separately. The
"program" can be in any programming language, domain-specific language, or another
computational structure such as an automaton.

8

I have heard the term. I interpret it to mean either: 1) neural approaches to creating,
interacting with, processing, or reasoning over symbolic structures and representations;
or 2) using symbolic reasoning strategies with functions learned via neural networks.

4

Combining knowledge from text (typically via the parameters of a neural network
trained on a task on text) and symbolic knowledge (typically a pre-constructed
knowledge graph)

6

I understand it as referring to neural architectures that integrate some type of symbolic
component (like inductive logic programming or even finite state machines).

6

I interpret it as meaning the imposition of non-trained constraints into a model, whether
through the structure of the representation the model is forced to use (e.g. graphs, where
nodes represent explicit symbols), or more explicit constraints, like using ILP in models.
Another important thing is that the constraints have to map onto the idea of an actual
symbol, and in my experience, that tends to be related to the human abstraction that’s in
place for a particular problem.

6

I interpret it as neural/latent reasoning, grounded with fundamental and intermediate
symbols/rules which allow a model/algorithm to systematically reason through these
constraints/rules to come to an answer. I think we as humans do possess the ability to
reason neurosymbolically, by connecting our latent thought to tangible, or well-defined
concepts in the real-world. E.g. we learn a grammar and syntax system in order to
communicate. Words can be defined as tangible symbols, which when combined
appropriately, can communicate a thought (which is intangible).

6

Neurosymbolic reasoning is essentially a semi-parametric approach, wherein you identify
existing discrete logical entries or entities and then perform some form of reasoning on top
of that, the reasoning framework being a neural architecture. The symbolic part comes from
recognizing the exact symbols or entities and how they are related, or could be related to
one another based on a given ontology or ruleset. The neural part helps in generalization.

7

I would like to interpret it as integrating (first-order) logic into the neural network. I think
it is logic that makes neural networks Neurosymbolic.

8

To me, a neurosymbolic method means one that combines a deep learning approach with a
more traditional symbolic method. There can be different ways to combine them. For
example, use a predefined symbolic architecture and then use deep learning to learn
representations for the symbols

8

I have never heard the term before. But as I interpret it, it would involve the class of
learning architectures and approaches which combines neural subcomponents with
symbolic subcomponents.

1

I have heard of it. Don’t exactly know what it means but if I had to guess, I would say it
refers to a sort of rule-based reasoning system that uses some sort of pre-neural
representations (inspired by how brains work). I honestly have no clue.

3

Typically refers to architectures/systems that combine any of the neural-based architectures
(NNs, (bi-)LSTMS, autoencoders, etc.) with some source of symbolic processing
(e.g. constraint propagation, numerical reasoning) or data (e.g. hand-built ontologies)

8

Table 2: Survey responses



Response Familiarity
I have heard of it but am not too familiar on what exactly the definition is. If I had to
guess, I would assume that it has something to do with the fact that our brains group
complex things into abstract "symbols" (simplified representations corresponding with
more complex things in the real world). This enables our brains to reason about things
without having to pay attention to unneccesary detail, which I don’t think current machine
learning models are really capable of yet.

4

Haven’t heard the term 1
My understanding is that if you combine the neural network computation with discrete
symbolic operations together, that would be considered neuro-symbolic. Loosely speaking,
if your system has a NN component, and discrete operations like arithmetic, logical and/or,
that should also count.

7

If you can do something in under a second, then machines can do it almost as good (this is
called perception). If it takes you more than 1 second to something, then machines cannot
do it as well because it often involves complex reasoning (this is called cognition or
reasoning). It is difficult to reason with interpretable, consistent symbols exclusively in
the vector space. On the other hand, the search space of symbols becomes complex and
difficult to deal exclusively using symbols with no semantic representation. Neurosymbolic
methods combine the best of these worlds by narrowing the search space and learning the
mapping between symbols and neural decodings. A primitive and simplest example of a
neurosymbolic method could be when beam search is controlled with symbolic rules.

8

Something interpretable and grounded in explicit knowledge 6
My interpretation is that it is a combination of classical AI (like first order logic, knowledge
graphs, context free grammar, that kind of stuff) and neural networks. For example, neural
networks might be used to model operators and transformations used in classical AI.

2

I have heard it in the setting of AGI for speech understanding on the phonemic level 4
I do not know. 1
My understanding of the term is using first order logic to make neural nets more
understandable.

2

Table 3: Survey responses



Tables Mou et al. (2017),Shi et al. (2020),Yi et al. (2018), Zellers et al. (2021)

Code/Logic

Mou et al. (2017), Shi et al. (2020), Yi et al. (2018),Liang et al. (2017),
Demeter and Downey (2020), Arabshahi et al. (2021), Chen et al. (2020c),
Amizadeh et al. (2020), Stammer et al. (2021),Mao et al. (2019), Vedantam et al. (2019),
Elder et al. (2019), Xiao et al. (2017)

Graphs

Mou et al. (2017),Shi et al. (2020),Verga et al. (2021), Liang et al. (2017),
Moghimifar et al. (2021), Kang et al. (2018), Arabshahi et al. (2021),
Marino et al. (2021),Ma et al. (2019),Liang et al. (2018), Hwang et al. (2021),
Feblowitz et al. (2021)


