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Abstract

Traditional approaches for creating natural lan-
guage inference datasets from semi-structured
datasets either involve manually constructing
datasets, which is a computationally expen-
sive and time-consuming operation which lim-
its generation to small-scale datasets, or use
fully automated methods, which while capa-
ble of producing large-scale datasets frequently
produce basic statements that may lack rea-
soning. In this paper, we produce a semi-
automated framework for data generation from
entity based tabular data. We use the IN-
FOTABS (Gupta et al., 2020) dataset to gen-
erate a large-scale human-like synthetic data
that includes counterfactual entity-based tables.
Through thorough experiments we demonstrate
the performance of the generated dataset.

1 Introduction

Natural Language Inference (NLI) is a Natural Lan-
guage Processing task of determining if a hypothe-
sis is entailed or contradicted given a premise, or is
unrelated to it (Dagan et al., 2013). This task was
extended to include tabular premises in TABFACT
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(Chen et al., 2020b) and INFOTABS (Gupta et al.,
2020) datasets. To encode tabular data into a form
amenable for transformer based models, they are
flattened into artificial sentences using heuristics
(Chen et al., 2020b; Gupta et al., 2020; Eisenschlos
et al., 2020; Yin et al., 2020a, and others).

While manually generated datasets often are
biased and require extensive manual efforts in
terms of time and money, automatically generated
datasets can be simple and lack reasoning. In this
paper, we improve on the dataset creation processes
shown in Müller et al. (2021), TABFACT (Chen
et al., 2020b) and INFOTABS (Gupta et al., 2020)
and create a framework to ease the automatic gen-
eration of sentences from tabular data. Through a
semi-automated framework we can limit the human
effort to creating a set of key-specific rules-based
templates based on the category of a table. These
templates can then be used as a fill-in-the-blanks
based on the actual tabular data values.

We envision this framework to help generate
large-scale datasets that could potentially serve as
an augmentation dataset or when the training data
is limited. In this paper we make the following
contributions:

1. We create a semi-automatic framework for

Janet Leigh (Original) Janet Leigh (Counter-Factual)
Born July 6, 1927 Born July 6, 1927
Died October 3, 2004 Died January 13, 1994
Children Kelly Curtis; Jamie Lee Curtis Children Kelly Curtis
Alma Mater University of the Pacific Alma Mater University of California
Occupation None Occupation Scientist
H1: Janet Leigh was born before 1940. E H1: Janet Leigh was born after 1915. E
H2: The age of Janet Leigh is more than 70. E H2: The age of Janet Leigh is more than 70. C
H3: Janet Leigh has 1 children C H3: Janet Leigh has more than 2 children. C
H4: Janet Leigh graduated from University of the E H4: Janet Leigh graduated from University of the C
Pacific. Pacific.

Table 1: An example of original and counter-factual table from the category Person. Here we have showcased how
different keys can be modified using multiple operations. We have also shown how the labels (E - Entailment, C -
Contradictory) for a particular key specific hypothesis may change. In the example table of "Janet Leigh" the first
column represent the keys(e.g. Born; Died etc) and the second column represent the corresponding values (e.g. July
6,1927; October 3, 2004 etc).



data generation from entity based tabular data.
The framework gives the ability to generate
human-alike large-scale data with minimal hu-
man intervention.

2. We use the framework to extend the IN-
FOTABS (Gupta et al., 2020) dataset and cre-
ate a large-scale human-like synthetic data
AUTO-TNLI that also contains counterfactual
entity-based tables.

3. We demonstrate the AUTO-TNLI complex-
ity and the benefits of utilizing it as an aug-
mentation dataset through experiments using
RoBERTa (Liu et al., 2019) model (~1.9-2%
performance improvement). Furthermore, we
also explore semi-supervised limited training
setting, and observe a 12.22% improvement
over just INFOTABS finetuning with augmen-
tation.

The dataset and associated scripts, is available at
https://autotnli.github.io.

2 Proposed Framework

This section describes the semi-automatic frame-
work for generating human-like inferential hypoth-
esis sentences (i.e. true/false) from semi-structured
tabular data as premise, more specifically entity-
table data such as Wikipedia InfoBoxes.

Müller et al. (2021) demonstrated that adding
counterfactual hypothesis sentences enhances
model performance on the TABFACT tabular in-
ference dataset. Dagan et al. (2013) demonstrated
that inserting paraphrases boost lexical diversity of
premise and thus enhanced model performance on
unstructured NLI. Chen et al. (2020a) demonstrated
in NLG how automatic frameworks lack the abil-
ity generate logical sentences with non-superficial
reasoning. We draw on these findings to construct
AUTO-TNLI which incorporate counterfactual ta-
bles created using original INFOTABS tables, as
well as paraphrase premise statements.

Next, we would describe the main component
of our proposed framework (a.) Hypothesis Tem-
plate Creation, (b.) Rational Counterfactual Table
Creation, (c.) Paraphrasing of Premise Tables, and
(d.) Automatic Table-Hypothesis Generation.

2.1 Hypothesis Template Creation

For a particular category of a table (E.g. Movie),
the attributes are consistent across all tables (e.g.
Length, Producer, Director, and others). Therefore,
one can write key-based rules to create logical
hypothesis sentences. We created such key-based
rules for the following reasoning types : (a.) Tempo-
ral Reasoning, (b.) , Numerical Reasoning, (c.) Spa-
tial Reasoning, (d.) Common Sense Reasoning. Ta-

Figure 1: Framework for hypothesis generation in AUTO-TNLI. yellow represents values that are changed in the counterfactual
tables.

https://autotnli.github.io


Reasoning Category Template-Rules Table-Constraints

Temporal Person <Person> was born in a leap year. Born Date ≤
<Person> died before/after <Died:Year> Death Date

Numerical Movie <Movie> was a "hit if <Box Office> − <Budget> else flop" Budget ≥ 0<Movie> had a Box Office collection of <BoxOffice>

Spatial Movie <Movie> was released in <Release1:Loc>, "X" months before/after Release1:Location ̸=
<Release2:Location> Release2:Location

KCS City The governing of <City> is supervised by <Mayor> Lowest Elevation ≤
<Mayor> is an important local leader of <City> Highest Elevation

Table 2: Rules and Constraints are classified into specific areas of reasoning, as indicated in the table. A few
examples of rules and constraints have been provided for each category. <Died:Year> indicates that the year value
is extracted from <Died> , whereas <Release1:Location> indicates that the location is extracted from a single
key-value pair in <Release>. KCS denote knowledge and common sense reasoning in this context.

ble 2 provide examples of logical rules used to
create templates. We denote the category of a table
as Category and the table row keys of as <Key>.

Frequently, these key-based reasoning rules gen-
eralize effectively across several categories. For
example, the temporal reasoning rule based on
the date-time type could be modified minimally
to work for <Release Date> of category Movies ta-
bles, as well as the <Established Date> key of cat-
egory University tables, in addition to the <Born>
of category Person table in 2. Additionally, reason-
ing rules can be expanded to incorporate multi-row
entities from the same table’s data, as illustrated in
Table 2 for the numerical reasoning type. Other
examples for the same are "The elevation range of
<City> is <HighestElevation> − <LowestEleva-
tion>" for category City table, "<SportName> was
held at <location> on <date>" for Sports category
table.

2.2 Rational Counterfactual Table Creation

One can create counterfactual tables for a particular
category with total possibles n keys by modifying
an existing category table with k keys (n >= k)
as follows: (a.) keep the row as it without any
change, (b.) adding new value to an existing key,
(c.) substituting the existing key-value with counter-
factual data, (d.) deleting a particular key-value pair
from the table, (e.) and add a missing new keys (i.e.
a key from (n− k) ), (f.) and adding a missing key
row to the table.

For creating counterfactual tables, for each row
of existing, a subset of operation is selected at a
random each with a pre-decided probability p (a
hyper-parameters). While creating these tables,
we imposed a essential key-specific constraints to
ensure logical rational in the generated sentences.
E.g. in the example Table 1, for the counterfactual
table of Janet Leigh (Counterfactual), the <Born>

Figure 2: Hypothesis generation via original and counterfac-
tual tables for AUTO-TNLI dataset.

is kept similar to original of Janet Leigh (Original),
whereas <Died> has been substituted for another
Person table, while ensuring the constraint BORN

DATE < DEATH DATE i.e. Jan 13, 1994 (Died
Date of Counterfactual Table) is after July 6, 1927
(Born Date of Counterfactual Table)). Without the
following the constraint that BORN DATE < DEATH

DATE, the table with become rationally incorrect
or self contradictory.

2.3 Paraphrasing of Premise Tables

For each key for of a given category, we create
at least three simple paraphrased sentences of the
key-specific template. E.g. for <Alma Mater>
from Person, possible paraphrases can be "<Per-
sonName> earned his degree from <AlmaMater>",
"<PersonName> is a graduate of <AlmaMater>",
and "<PersonName> is a almamater of <Alma-
Mater>".

2.4 Automatic Table-Hypothesis Generation

Once the templates are constructed, they can be
used to automatically fill in the blanks from the
entries of tables and create logically rational hy-
pothesis sentences. On each turn, the machine
creates unique counter-factual tables because the
values to be added/substituted/deleted are randomly
selected from a universal collection of same row-



value types distinct values, i.e. constructed using
all values entries for that key in all training tables
of the dataset.

Contradict sentences are constructed similarly
to entail sentences by picking a random item from
the universal set and substituting it for the original
value while adhering to the key-specific constraints.
We ensure that similar template with minimal to-
ken alteration is used to create entail contradict pair.
This way of creating entail and contradiction state-
ment with lexically overlapping tokens ensure that,
future model trained on such data won’t adhere
spurious correlation from the tabular NLI data i.e.
minimising the hypothesis bias problem (Poliak
et al., 2018).

3 The AUTO-TNLI Dataset

We extend the INFOTABS to construct AUTO-
TNLI using the framework described in Section
2. INFOTABS (Gupta et al., 2020) consists of a
pair of sentences: a hypothesis statement grounded
and inferred on premise table take extracted form
Wikipedia Infobox table across multiple diverse
categories. We construct the AUTO-TNLI dataset
from a subset of the INFOTABS dataset (11 out
of 13 total categories), which includes the original
table plus five counterfactual tables correspond-
ing to each original table, for a total of 10, 182
tables. We retrieve 134 keys and 660 templates
in total, which we utilize to generate 1, 478, 662
sentences. However, unlike INFOTABS, which
contains three labels, ENTAIL, CONTRADICT and
NEUTRAL, AUTO-TNLI contains only two labels
ENTAIL and CONTRADICT.

Statistic Metric Numbers
Number of Unique Keys 134
Average number of keys per table 12.63
Average number of sentences per table 164.51

Table 3: AUTO-TNLI Statistics.

As previously reported in the original IN-
FOTABS paper by Gupta et al. (2020), annotators
are biased toward certain keys over others. For
example, for the category Company, annotators
would create more sentences for the key <Founded
by> than for the key <Website>, resulting in an
inherent hypothesis bias in the dataset. While cre-
ating the templates for AUTO-TNLI, we ensure
that each key has a minimum of two hypotheses
and a minimum of three (> 3) premise paraphrases,
which helps in mitigating hypothesis bias. To ad-
dress the labeling issue of inference class imbal-

ance, we construct approximately 1:1 ENTAIL to
CONTRADICT hypothesis.

We observe that the majority of additional hu-
man labor required to build such sentences is spent
on the set of key-specific rules and constraints that
ensure the sentences are grammatically accurate
and the counter-factual tabular data is logically con-
sistent, i.e. not self-contradictory. Table 3 details
the number of unique keys, the minimum/maxi-
mum/average number of keys, and the total num-
ber of sentences per table in AUTO-TNLI. As can
be observed, the system generates a large amount
of AUTO-TNLI data in comparison to limited IN-
FOTABS while using only few human constructed
templates with key-specific rules and constraints.
Table 4 shows a qualitative comparison between
AUTO-TNLI and INFOTABS.

Features
Dataset Coverage Scalability Diversity
INFOTABS ✗ ✗ ✓
AUTO-TNLI ✓ ✓ ✓

Table 4: Comparison between AUTO-TNLI & IN-
FOTABS. Coverage - implies how well the keys are
covered. Scalability - implies whether the amount of
data can be increased. Diversity - implies diversity
across category.

We have chosen INFOTABS as it has three eval-
uation sets α1, α2 and α3 in addition to the usual
training and development sets. The α1 set is lexi-
cally and topic-wise similar to the train set, in α2

the hypothesis are lexically adversarial to the train
set and in α3 the tables are from topics not in the
train set. Moreover it has several reasoning types
such as multi-row reasoning, entity type, negation,
knowledge & common sense etc. INFOTABS has
all three labels ENTAIL, NEUTRAL and CONTRA-
DICT compared to just two labels in other datasets
such as TABFACT.

4 Experiment and Analysis

In this section, we detail the several experiments
that were conducted, as well as their outcomes and
analyses.

We use RoBERTaBASE
1 (Liu et al., 2019) (12-

layer, 768-hidden, 12-heads, 125M parameters) as
our model for all of our experiments. Neeraja
et al. (2021) shows data augmentation techniques

1 Experiments on the development set showed that
RoBERTaBASE outperforms other pre-trained language models.
BERTBASE and ALBERTBASE reached an accuracy of 63% and
70.4% respectively.



Setting Train-Data Cat-Rand Cross-Cat Key No-Para Cross-Para Entity

INFOTABS

Random 50.00 50.00 50.00 50.00 50.00 50.00
w/o finetuning 50.00 49.64 50.17 49.77 49.75 49.78
INFOTABS 66.17 63.86 65.41 65.15 65.12 63.66
MNLI 67.15 64.95 64.79 65.33 65.33 62.2
MNLI +INFOTABS 69.28 65.9 65.25 66.41 66.39 65.02

MNLI
+IN-
FOTABS

Hypothesis-Only 53.74 55.1 58.82 66.47 66.86 56.36
AUTO-TNLI 78.74 77.94 82.39 90.06 89.38 74.94
MNLI +AUTO-TNLI 83.82 78.95 84.71 91.17 90.57 77.66
MNLI +INFOTABS +AUTO-TNLI 83.62 80.78 85.23 90.98 90.03 77.19

Table 5: Performance (accuracy) on AUTO-TNLI with RoBERTaBASE model across several evaluation splits with /
without fine-tuning on AUTO-TNLI. bold - represents max across rows i.e. best train/augmentation setting.

that uses MNLI data for pre-training acts as im-
plicit knowledge and enhances the model perfor-
mance for INFOTABS. Therefore, we also explore
implicit knowledge addition via data augmenta-
tion. In particular, we explored the following mod-
els: (a) RoBERTaBASE fine-tuned using the AUTO-
TNLI dataset (b) RoBERTaBASE, fine-tuned on the
MNLI dataset and the AUTO-TNLI dataset (MNLI
+ AUTO-TNLI). Additionally, we also explore per-
formance with RoBERTaBASE model fine-tuned se-
quential on all three MNLI, AUTO-TNLI and IN-
FOTABS dataset.

Overall, we address the following two research
questions through our experiments:

RQ1: (a) How challenging is AUTO-TNLI for the
task of tabular NLI (TNLI)? (b) Is fine-tuning with
the training set beneficial for the TNLI task?

RQ2: (a) Can AUTO-TNLI be effectively utilised
for data augmentation, i.e. implicit knowledge ad-
dition, to enhance performance over INFOTABS
test-sets? (b) How useful is AUTO-TNLI in sce-
narios of limited supervision?

4.1 Using AUTO-TNLI as TNLI dataset
In this section, we access how challenging our
AUTO-TNLI is in comparison to the INFOTABS
datasets (i.e. RQ1).

Data Splits: We first construct several train-dev-
test splits of AUTO-TNLI such that: (a) splits
have table from different domains (categories)2

(b) splits have unique table row-keys, (c) premises
in splits are lexically diverse. For the category-
wise splits, we explore two ways (a) we divided
categories randomly into train-dev-test. (b) we con-
struct the splits after doing a cross-category perfor-
mance analysis (refer §7 in the Appendix). In cross-
category analysis we get all premise-hypothesis
2 by table domain/categories we refer to table entity types e.g.
"Person", "Album", and others

pairs generated from tables in one category (for
example : person) and train our model on just this
data. After this we test on premise-hypothesis pairs
generated from all other categories (for example
: city, movie etc.) one-by-one. We keep the cat-
egories that are difficult for the model to solve in
the test set, this is achieved by calculating the num-
ber of times a category’s accuracy falls below a
certain threshold 3 and then selecting the top few
categories. We kept book, paint, sports & events,
food & drinks, album in train-set, person, movie,
city in dev-set and organization, festival, university
in test-set.

For key-wise split, we explore two approaches
(a) we divide the keys randomly into train-dev-test.
(b) we decided splits based on the associated keys-
values named entities type namely - person, person
type, skill, organization, quantity, date time, loca-
tion, event, url, product after cross-entity perfor-
mance analysis.. Similar to cross-category analysis
above, here we get all premise-hypothesis pairs cor-
responding to keys in a single entity, for example
let’s say we choose the entity person and it includes
the keys written by, mayor, president etc. then we
get all premise-hypothesis pairs corresponding to
these keys and train on them. After this we test on
premise-hypothesis pairs corresponding to all other
entities (for example : persontype, skill) one-by-
one. We keep the entities that are difficult for the
model to solve in the test set, this is achieved by
calculating the number of times a entity’s accuracy
falls below a certain threshold 4 and then selecting
the top few entities. We kept the url, event, person
type, skill, product in train-set, quantity, other, per-
son in dev-set and date time,organization, location
in test-set.

Finally, for the lexical diversity, we splits via
paraphrasing premise. Here too, we explore two
different strategies (a) premises in train, dev and
3 we choose the threshold as 80% 4 we choose the threshold
as 80%



test are not paraphrased i.e. have similar templates.
(b) premises in train, dev and test are lexically para-
phrased i.e. have distinct templates.

Using AUTO-TNLI only for Evaluation (RQ1a):
We first explore how challenging is AUTO-TNLI
is used as an evaluation benchmark dataset. To
explore this. we compare the performance of pre-
trained RoBERTaBASE model in four distinct set-
tings, as follows (a.) without (w/o) fine-tuning,
(b.) fine-tuned with INFOTABS, (c.) fine-tuned with
MNLI, (d.) fine-tuned over both MNLI and IN-
FOTABS in order and and evaluate it on AUTO-
TNLI test-sets splits. For finetuning on MNLI and
INFOTABS dataset, we only consider the ENTAIL

and CONTRADICT while excluding the NEUTRAL

label instances for training purposes.
Analysis. Table 5 shows a comparison of accu-

racy across all augmentation settings. The best is
obtained when using both MNLI and INFOTABS
for training. In the cases where we have used some
fine-tuning with MNLI or INFOTABS we observed
an average accuracy of 67.5% comparing this with
zero-shot accuracy for INFOTABS where we ob-
served an accuracy of 58.9% we can see that semi-
automatically generated data is still pretty challeng-
ing to solve.

Using AUTO-TNLI for both Training and Evalu-
ation (RQ1b): Next, we explore if providing su-
pervision improves the performance on the AUTO-
TNLI evaluation sets. To explore this, we com-
pare the performance of pre-trained RoBERTaBASE
model in two distinct settings, where we fine-tune
on train set (a.) of AUTO-TNLI, (b.) of both MNLI
and AUTO-TNLI in order and evaluate on AUTO-
TNLI test-sets. Here too, we exclude the NEU-
TRAL label instances from MNLI.

Analysis. Table 5 shows a comparison of perfor-
mance (accuracy) across all augmentation settings.
For all splits, except paraphrasing RoBERTaBASE
is 80% accurate on average, which shows that our
semi-automated dataset AUTO-TNLI is as chal-
lenging as INFOTABS (Gupta et al., 2020), which
has an average accuracy of 70% across all splits and
is manually human-generated and is one-tenth the
size of AUTO-TNLI. Pre-finetuning with MNLI
as augmented data (i.e. implicit knowledge) only
improves the performance by 2%.

4.2 Using AUTO-TNLI for Data Augmentation
We explore if AUTO-TNLI can be used as an
augmentation dataset for INFOTABS (i.e. RQ2).

Since INFOTABS include all three ENTAIL, NEU-
TRAL and CONTRADICT labels, whereas AUTO-
TNLI include only ENTAIL and CONTRADICT

labels, we explore the inference task as a two-
stage classification problem. In first stage, we
train a RoBERTaBASE classification model to
predicts whether a hypothesis is NEUTRAL vs
NON-NEUTRAL (either ENTAIL or CONTRA-
DICT). In second stage, we fine-tune a separate
RoBERTaBASE model to further classify the NON-
NEUTRAL prediction instances from stage one into
ENTAIL or CONTRADICT label. Figure 3 illustrate
the two-stage classification approach.

Comparison Models. For first-stage we con-
sider two training strategies: (a.) only train on
INFOTABS, (b.) pre-finetune on both MNLI fol-
lowed by training on INFOTABS. We consider
multiple data augmentation technique for sec-
ond stage training where we augment (a.) Orig:
the AUTO-TNLI without counterfactual table in-
stances, (b.) Orig+Counter: AUTO-TNLI includ-
ing counterfactual table instances5, (c.) MNLI +
Orig: both MNLI and AUTO-TNLI without coun-
terfactual table instances (i.e. (b.)), (d.) MNLI +
Orig + Counter: both MNLI and AUTO-TNLI
including counterfactual table instances (i.e. (c.)). .
Additionally, we compare all above methods with
(e.) No Augmentation i.e. the approach where we
does not augment any additional data.

Evaluation Set. For evaluation, we utilize the IN-
FOTABS test sets which include all three inference
labels. In addition to standard development and a
test split (α1), INFOTABS also include two adver-
sarial test splits namely α2 and α3. Adversarial test
splits α2 contain instances that are lexically similar
to α1, except that the ENTAIL and CONTRADICT

labels (and vice-versa) are manually flipped by hu-
man annotator via minimal perturbation in hypothe-
sis sentences. E.g. in the example table 1 if hypoth-
esis sentence Janet Leigh was born before 1940 is
ENTAIL, then in α2 after perturbation the instance
became Janet Leigh was born after 1940 with label
as CONTRADICT. The test set α3 is a zero-shot
evaluation set, which consists of premise tables
from different domain with minimal key overlaps
with the training set premise tables. To better han-
dle, α2 and α3 test-sets, we include counterfactual
table and hypothesis in AUTO-TNLI.

5 We take five counterfactual table for each original table



E vs C
N vs NN Test-split No Augmentation Orig Orig+Counter MNLI+Orig MNLI+Orig+Counter

INFOTABS
dev 71.06 70.72 71.39 72.28 72.22
α1 67.72 67.56 69.33 68.78 69.89
α2 59.11 59.22 58.94 59.5 61.28
α3 56.94 56.94 58.17 58.33 58.61

MNLI
+IN-
FOTABS

dev 70.67 70.89 71.44 72.56 72.67
α1 68.94 68.83 70.56 70.67 72.00
α2 60.56 60.83 60.5 61.11 62.50
α3 58.44 57.72 59.11 60.06 59.94

Table 6: Performance (accuracy) of combine stage one RoBERTaBASE (i.e. NEUTRAL vs NON-NEUTRAL) and
stage two RoBERTaBASE (i.e. ENTAIL vs CONTRADICT) classifier across several data augmentation settings. Here,
for stage one we explore also explore pre-fine tuning on MNLI data. bold - represents max across columns i.e. the
best augmentation setting.

Figure 3: Two stage classification approach.

Supervision Scenarios We analyse the effect of
using AUTO-TNLI as augmentation data for IN-
FOTABS in two setting (a) Complete Supervision
where we use complete INFOTABS training set for
final fine-tuning (b) Limited Supervision where
we use limited INFOTABS supervision for second
stages. We explore using 0% (i.e. no fine-tune),
5%, 10%, 15%, 20% and 25% of INFOTABS train-
ing set for final fine-tuning. .

1. Complete INFOTABS Supervision (RQ2a)
Table 6 shows a comparison of accuracy across
all augmentation settings.

In the first case, when the first stage is only
trained on INFOTABS, we observe an improvement
of 1.6% and 1.2% percentage in α1 and α3 test-
set through direct AUTO-TNLI data augmentation
base pre-finetuning (Orig+Counter) in comparison
with no augmentation i.e. direct INFOTABS fine-
tuning. We didn’t see any substantial improvement
in α2 performance. Fine-tuning with MNLI fol-
lowed by AUTO-TNLI (with counterfactual tables)
further improve the performance by 0.6%, 2.0%,
and 0.45% on α1, α2 and α3 respectively.

For second case, when the first stage is trained
on both MNLI, followed by INFOTABS, we
observe an improvement of 1.60% and 0.67%
percentage in α1 and α3 test-set through di-
rect AUTO-TNLI data augmentation base pre-
finetuning (Orig+Counter) in comparison with no
augmentation i.e. direct INFOTABS fine-tuning.
Here too, we didn’t see any substantial improve-

ment in α2 performance. Finetuning with MNLI
followed by AUTO-TNLI (with counterfactual ta-
bles) further improve the performance by 1.44%,
1.94%, and 0.83% on α1, α2 and α3 respectively.

Ablation Analysis - Independent Stage-1 and
Stage-2 Performance: We also did an ablation
study to access the performance of individual
RoBERTaBASE models of both stages. Table 8,
show the performance for stage one classifier i.e.
NEUTRAL vs NON-NEUTRAL. We observe that by
adding MNLI data for augmentation substantially
improve the performance by 1.89%, 2.28%, and
2.05% for α1, α2 and α3 respectively.

Table 7 shows the comparison between all set-
tings of stage-2. In stage-2 adding counterfactual ta-
bles improve the performance by 2.75% and 1.42%
in α2 and α3 respectively. We didn’t see any sub-
stantial improvement in α2 performance. If we
pre-finetune further with MNLI along with AUTO-
TNLI we further get an improvement of 5.42%,
3.33% and 2% in α1, α2, and α3 respectively.

2. Limited INFOTABS Supervision (RQ2b) In
this setting, we analyse the effect of limiting IN-
FOTABS supervision for the second stage i.e. EN-
TAIL vs CONTRADICT. We explore using 0% (i.e.
no fine-tune), 5%, 10%, 15%, 20% and 25% of IN-
FOTABS training set for fine-tuning. Table 9 shows
the performance for every augmentation settings.
The table report average result over three random
samples from AUTO-TNLI. We observe that aug-
menting with AUTO-TNLI improve performance
for all percentages. Furthermore, the improvement
is much more substantial for lower than higher
percentages. Here too, the best performance are
obtained via fine-tuning with MNLI followed by
AUTO-TNLI for all percentages.



Test-split No-Augmentation Orig Orig+Counter MNLI+Orig MNLI+Orig+Counter
dev 77.5 77.83 78.08 80.75 80.25
α1 73.58 73.83 76.33 76.5 79.00
α2 56.92 57.42 56.92 58.42 60.25
α3 70.58 69.42 72 73.08 72.58

Table 7: Performance (accuracy) of stage two RoBERTaBASE (i.e. ENTAIL vs CONTRADICT) classifier across
several data augmentation settings. bold same as Table 6.

Test-split No-Augmentation MNLI

dev 84.11 84.50
α1 82.94 84.83
α2 85.33 87.61
α3 73.17 75.22

Table 8: Performance (accuracy) of stage one
RoBERTaBASE (i.e. NEUTRAL vs NON-NEUTRAL)
across several data augmentation settings. Here, No-
Augmentation means INFOTABS, and MNLI means
MNLI + INFOTABS. bold same as Table 6.

5 Discussion

Why Semi-Automatic Framework? By examin-
ing the two diametrically opposed of frameworks,
namely a Human and an Automatic Annotation
Framework, we may see a plethora of issues with
both. Manually created data is prohibitively ex-
pensive and demands a great deal of human effort,
limiting the ability to create large-scale databases
Additionally, humans have a propensity to create
artificial patterns when manually creating a dataset,
such as not giving all keys same importance (ex-
plained in Section 3). At the same time, while
autonomous data generation is computationally ef-
ficient, it has a number of limitations, including
the inability to generate linguistically difficult sen-
tences and the difficulty of incorporating reasoning
into dataset. Because most deep learning mod-
els perform better with more data, it is critical to
produce large-scale datasets at a reasonable cost
while retaining data quality. With this in mind, we
presented a "semi-automatic" architecture with the
following benefits: 1. It simplifies the creation of
large-scale datasets. Using only 660 templates, we
can generate 1,478,662 premise-hypothesis pair-
ings from around 10,182 tables. 2. The frame-
work may be reused with additional tabular data
as long as the structure is preserved. 3. It enables
the creation of linguistically and lexically diverse
datasets. 4. As shown in Section 3, hypothesis
bias can be minimized by establishing an adequate
number of diverse templates for all key of each cat-
egory. 5. The premises have been paraphrased in
three different ways to bring the necessary lexical

diversity.

Why Counterfactual Table Generation? Tabu-
lar dataset is inherently semi-structured in nature.
Therefore, for each category table having a spe-
cific set of keys. This enables us to create key-
specific templates based on the entity-types of keys
(Neeraja et al., 2021), which could be applied to
million of tables of given category. Furthermore,
as explained in section 3, the templates also gen-
eralize across keys with similar value type across
categories. All this is only possible due to semi-
structure nature of tabular data. Using counterfac-
tual tables provides the model with more linguis-
tically comparable but oppositely labeled data to
learn from, guaranteeing that the model can learns
beyond the superficial textual artifacts and so be-
comes more resilient. As a result, when counter-
factual data is included in the AUTO-TNLI, we
observe performance improvement throughout all
experimental settings. This learning is further sup-
ported by the findings for better gains in α2, which
comprises instances of linguistically comparable
but oppositely labeled data instances.

6 Related Work

Tabular Reasoning. There has been consider-
able work on solving NLP tasks on semi-structured
tabular data, such as tabular NLI (Gupta et al.,
2020; Chen et al., 2020b), question-answering task
(Pasupat and Liang, 2015; Krishnamurthy et al.,
2017; Abbas et al., 2016; Sun et al., 2016; Chen
et al., 2021a, 2020c; Lin et al., 2020; Zayats et al.,
2021; Oğuz et al., 2020, and others) and table-
to-text generation (Parikh et al., 2020; Nan et al.,
2021; Yoran et al., 2021; Chen et al., 2021b).

Similar to our data setting, some recent pa-
pers have also proposed ideas for representing
Wikipedia relational tables, some such papers
are TAPAS (Herzig et al., 2020), TaBERT (Yin
et al., 2020b), TABBIE (Iida et al., 2021),TabStruc
(Zhang et al., 2020), TabGCN (Pramanick and
Bhattacharya, 2021) and RCI (Glass et al., 2021).
Some papers such as (Yu et al., 2018, 2021; Eisen-
schlos et al., 2020; Neeraja et al., 2021; Müller



Test-split Train (%) No Augmentation Orig Orig+Counter MNLI+Orig MNLI+Orig+Counter

dev

0 50.25 59.58 52.58 62.67 60.75
5 65.31 69.92 69.86 70.81 71.11
10 67.53 72.08 69.83 74.83 73.42
15 69.47 71.69 73.61 75.28 74.42
20 71.28 73.61 72.47 74.11 74.11
25 70.21 72.88 74.54 74.71 74.63

α1

0 49.92 59.42 52.42 61.58 62.33
5 65.75 69.08 68.89 70.72 70.92
10 67.58 71.42 69 72.58 74
15 69.14 70.69 70.83 73.28 74.25
20 71.53 72.47 72.39 74.03 74.61
25 69.75 72.38 73.75 74.5 75.13

α2

0 50.17 59.00 59.75 61.17 61.67
5 43.81 54.92 53.53 56.25 58.03
10 47.92 54.08 54.5 58.83 56.75
15 47.31 54 53.03 56.89 57.42
20 49.17 54.03 54.44 56.89 55.75
25 49.79 56.33 55.25 59 58.42

α3

0 49.42 59.25 56.33 64.67 63.92
5 57.72 63.47 63.5 68.06 68.14
10 60.67 65.75 62.5 71.58 67.67
15 64.42 65.69 68.47 70.03 71.11
20 65.22 67.03 67.81 70.39 71
25 64.08 67.17 67.42 70.46 70.92

Table 9: Performance (accuracy) of RoBERTaBASE (i.e. ENTAIL vs CONTRADICT) classifier with various data
augmentation for limited supervision setting i.e. varying percentage of INFOTABS training data. The average
standard deviation across 3 runs is 1.36 with range varying from 0.5% to 3.5%. bold same as Table 6.

et al., 2021, and others) study the improvement of
tabular inference by pre-training.

Tabular Datasets. Synthetic creation of dataset
has long been explored (Rozen et al., 2019; Müller
et al., 2021; Kaushik et al., 2020; Xiong et al.,
2020, and others). For tabular NLI in particular,
the datasets can be categorized into 1) Manually
created datasets (Gupta et al., 2020) with man-
ually creates both hypothesis and premise, (Chen
et al., 2020b) manually creates the hypothesis while
premise is automatically generated 2) Syntheti-
cally created semi-automatically generated datasets
which completely automate data generation (Müller
et al., 2021; Chen et al., 2020a,d,a). Several works
such as Poliak et al. (2018); Niven and Kao (2019);
Gururangan et al. (2018); Glockner et al. (2018);
Naik et al. (2018); Wallace et al. (2019) have shown
that models exploit spurious patterns in data. Simi-
lar to Nie et al. (2019); Zellers et al. (2018); Gupta
et al. (2020) authors investigate impacts of artifacts
in dataset by creating adversarial testsets.

INFOTABS (Gupta et al., 2020) pairs Wikipedia
infoboxes with human-generated hypotheses (an-
notated via Amazon’s Mechanical Turk). How-
ever, this dataset comes at a high cost of roughly
10K dollars for just 23k occurrences. Addition-
ally, the small dataset size results in model overfit-

ting, i.e., memorization problems. One technique
to circumvent these constraints is to employ auto-
matically produced sentences, such as TABFACT
(Chen et al., 2020b) has done. Fully automated
frameworks, on the other hand, have their own
set of limitations: (a) The generated sentences are
not complex in the manner that natural language
sentences is. (b) While the rules in TABFACT
are focused on simple numerical reasoning, it was
demonstrated in Chen et al. (2020a) that when mod-
els were trained on the dataset LogicNLG to gen-
erate sentences with more than just superficial rea-
soning, only 20% of the generated sentences were
deemed logically correct by humans.

7 Conclusion

This paper introduced a semi-automatic framework
for generating data from tabular data. We looked
into using this dataset as standalone data and as
an augmentation dataset with minimal fine-tuning
data. We also show how to turn this dataset into
a 3-label dataset and utilize it as an augmentation
dataset for INFOTABS using a two-stage classifi-
cation algorithm. Finally, we’ve shown that this
dataset can be beneficial in adversarial circum-
stances. Future work in this direction includes cre-
ating further lexically diverse and robust datasets
and exploring whether adding neutrals can improve



this data.
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A Cross-Category Analysis

We perform an analysis of how the semi-automatic
data created performs across categories i.e train-
ing on one category and then testing on the rest.
This gave an idea of how training on data from one
category generalizes over the rest. In Table 10 we
have shown the accuracy when our model is trained
on the categories written in rows and tested on the
categories given in the columns.
Here we observed that except some categories like
Sports & Events, Album and City the cross cate-
gory accuracy is pretty high among the rest. Album
seems to be quite a tough category with all cate-
gories giving a low cross-category accuracy when
tested on it. City gave a challenging test set when
trained on Sport & Events. University is the tough-
est test set for Album. When used as a test-set, City
gave the least accuracy against Sports & Events,
Album gives the least accuracy against Paint, Uni-
versity gave the least accuracy against Sports &
Events and for the rest Album gave the least accu-
racy.

B Cross-Entity Analysis

We perform an analysis of how the semi-automatic
data created performs across entities i.e training
on one entity and then testing on the rest. This
gave an idea of how training on data from one cate-
gory generalizes over the rest. In Table 11 we have
shown the accuracy when our model is trained on
the entity written in rows and tested on the entities
given in the columns.
Here we observed that Date & Time is quite a tough
test-set for most entities. Quantity is a tough test-
set for Skill and URL. For Skill and Person Type
are tough test-sets for Location and Quantity re-
spectively. When used as a test-set, URL gave the
lowest accuracy against Person Type, Quantity gave
the lowest accuracy against URL and for the rest
the URL gave the least accuracy.
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Category City Album Person Movie Book F&D Org Paint Fest S&E Univ
City 88.64 51.85 70.34 77.29 77 68.48 75.05 70.73 75.98 66.75 77.43
Album 52.92 79.35 65.2 60.28 57.38 65.75 59.16 53.48 58.8 55.75 52.9
Person 75.57 57.57 94.58 89.72 91.02 81.99 83.86 80.52 86.01 69.58 81.25
Movie 76.49 56.97 85.41 98.26 87.01 82.11 84.65 71.29 84.79 69.34 81.01
Book 54.03 53.37 76 77.69 97.84 78.68 76.81 73.51 64.94 71.62 53.76
F&D 61.79 56.72 80.67 83.24 87.55 95.82 80.46 76.49 74.61 68.71 58.03
Org 74.73 55.89 83.67 88.26 85.08 80.64 96.36 70.72 83.85 68.84 81.22
Paint 54.24 50.45 65.71 70.39 73.41 68.3 64.52 99 59.58 61.52 54.44
Fest 73.4 52.46 82.65 87.77 81.98 78.23 80.02 72.27 88.49 64.83 77.3
S&E 51.52 53.53 69.15 73.52 85.75 72.49 70.23 76.24 61.86 95.39 52.17
Univ 76.06 51.16 78.67 85.03 76.26 76.99 78.46 68.18 79.77 69.91 91.9

Table 10: Cross-category analysis of our data. red - shows the least accuracy when trained on a category and
tested on another. green - the least accuracy obtained when tested on a category and trained on the others. violet -
intersection of the two cases above (F&D- Food & Drinks, S&E - Sports & Events)

Entity Person P&T Skill Org Quantity D&T Location Event URL Product Other
Person 98.44 81.24 85.56 84.5 68.83 61.59 84.77 84.97 76.14 86.1 78.74
P&T 70.45 98.33 68.77 67.84 55.58 55.42 64.77 78.26 58.94 67.17 71.1
Skill 79.44 88.01 93.44 79.92 53.76 57.65 78.48 89.18 73.04 82.29 73.13
Org 92.36 87.33 86.58 95.62 63.56 58.03 87.19 87.12 84.09 86.9 81.29
Quantity 82.12 61.93 67.27 71.41 91.36 63.22 78.13 77 78.97 70.71 70.62
D&T 77.27 65.01 60.18 74.98 64.39 85.87 77.28 71.19 88.93 64.78 70.02
Location 88.32 76.32 86.3 83.18 68.89 62.31 94.43 81.57 83.69 79.98 75.75
Event 86.01 76.66 79.52 79.8 66.14 57.17 79.75 97.09 79.05 77.92 75.6
URL 61 56.27 58.42 60.88 51.61 55.02 62.68 60.56 95.25 56.07 55.09
Product 88.82 84.03 87.59 85.5 67.24 62.11 87.02 89.83 77.77 98.99 77.37
Other 83.39 84.98 80.82 78.24 62.44 58.29 76.97 86.74 69.98 82.78 93.88

Table 11: Cross-entity analysis of our data. red - shows the least accuracy when trained on a entity and tested on
another. green - the least accuracy obtained when tested on an entity and trained on the others. violet - intersection
of the two cases above (P&T- Person Type, D&T - Date & Time)


