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Abstract

Prior work on constructing challenging tabu-
lar inference data centered primarily on human
annotation or automatic synthetic generation.
Both techniques have their own set of issues.
Human annotation, despite its diversity and su-
perior reasoning, struggles from scaling con-
cerns. Synthetic data, on the other hand, de-
spite its scalability, suffers from lack of linguis-
tic and reasoning diversity. In this paper, we
address both of these concerns by presenting a
recasting approach that semi-automatically gen-
erates tabular NLI instances. We transform the
table2text dataset ToTTo (Parikh et al., 2020)
into a tabular NLI dataset using our proposed
framework. We demonstrate the use of our re-
casted data as an evaluation benchmark as well
as augmentation data to improve performance
on TabFact (Chen et al., 2020b). Furthermore,
we test the effectiveness of models trained on
our data on the TabFact benchmark in the zero-
shot scenario.

1 Introduction

Given a premise, Natural Language Inference
(NLI) is the task of classifying a hypothesis as
entailed (true), refuted (false) or neutral (cannot
be determined from given premise). Several large
scale datasets such as SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2018), and SQuAD (Ra-
jpurkar et al., 2016) explore NLI with unstructured
textual data as the premise. In recent times, ef-
forts towards including structured data like tables
as the premise for NLI began with TabFact (Chen
et al., 2020b), InfoTabS (Gupta et al., 2020) and
shared tasks like SemEval 2021 Task 9 (Wang et al.,
2021a) and FEVEROUS (Aly et al., 2021). Tabular
data differs from unstructured text due to its ability
to capture information and relationships through
structure instead of language.
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While textual entailment is well studied, tabular
entailment models require an immense amount of
data to learn structural correlations. Recent work
makes use of simple data augmentation techniques,
context-free-grammar and templates to generate
synthetic training data for NLP tasks in general
(Alberti et al., 2019; Lewis et al., 2019; Wu et al.,
2016; Leonandya et al., 2019), and Tabular NLI in
specific (Geva et al., 2020; Eisenschlos et al., 2020).
Even though synthetic data is highly scalable, it
lacks the linguistic diversity, both structural and
lexical, that human written data possesses. Since
tabular entailment tasks require complex reason-
ing over data (e.g. ranking trends, aggregation,
counting, etc), synthetic data limits the types and
complexity of reasoning to only those mentioned
in templates.

Human-annotated data, on the other hand, is flu-
ent and diverse, but extremely hard to scale owing
to its costly and time-consuming nature. Recent
work shows that many human-annotated datasets
for NLI contain annotation biases or artifacts (Guru-
rangan et al., 2018; Geva et al., 2019). This enables
NLI models to learn spurious patterns, meaning
that they are able to classify correctly even with
noisy, incomplete or fully absent premise (Poliak
et al., 2018b). One reason behind this is the skewed
distribution of words in the hypotheses. Negations
like “no” and “never” are easily correlated with
contradictions (Niven and Kao, 2019). Addition-
ally, recent work also highlights the bias introduced
by annotators through over-using certain types of
keys or table cells (Gupta et al., 2021).

Can we generate data that is as scalable as syn-
thetic data and yet contains human-like fluency
and linguistic diversity? QA2D (Demszky et al.,
2018) and SciTail (Khot et al., 2018) recast ques-
tion answering data for entailment tasks on unstruc-
tured text. In this case, recasting refers to changing
data intended for one task into data intended for



other distinct task. Taking inspiration from this, we
propose a framework to semi-automatically gener-
ate large-scale tabular NLI data by recasting exist-
ing table-to-text generation datasets (Parikh et al.,
2020; Nan et al., 2021; Yoran et al., 2021; Chen
et al., 2021, and others). This recasting framework
is a middle route that permits us to leverage the
advantages of both synthetic and human-annotated
data generation methods. Recasting available data
allows us to cut annotation time and cost. Since
the source data is not originally intended for NLI,
it eliminates the task-specific biases introduced by
annotators. Recasting also allows us to create data
that is not purely synthetic, owing to the human
involvement in the source dataset creation process.

Our generated data could be used for both evalu-
ation and augmentation purposes for tabular infer-
ence tasks. Models pre-trained on our generated
data show an improvement of 17 points from the
TabFact baseline (Chen et al., 2020b) and 1.2 points
from Eisenschlos et al. (2020), a synthetic data aug-
mentation baseline. Additionally, we report a zero-
shot accuracy of > 80% on TabFact’s simple test
set, which is 1.4 percent higher than the supervised
baseline accuracy reported by Chen et al. (2020b)
on its simple test set. We analyse the performance
of various models on different splits of our data
as evaluation set. Our main contributions are the
following:

1. We propose a semi-automatic framework to
generate tabular NLI data through recasting
table-to-text generation data.

2. We build a large-scale, diversified, human-
alike, and bias-free tabular NLI dataset using
an existing table to text generation dataset,
ToTTo (Parikh et al., 2020).

3. We show the effective of our generated data
for augmented training for Tabular NLI task
on TabFact (Chen et al., 2020b).

4. We demonstrate that our generated data could
be used as an challenging evaluation set for
tabular inference task.

The dataset and associated scripts are available at
https://totto-to-tnli.github.io.

2 Framework

In this section, we will describe our semi-automatic
framework to recast existing table-to-text genera-
tion data for the task of Table NLI. By recasting, we

mean to transform data intended for one task into a
form that meets the criteria of another distinct task.

Prerequisites Table-to-text generation datasets
provide us with a premise i.e. a table and a descrip-
tion generated from it. This description (referred
to as the Base Entailment here on), since derived
from the table, entails it. The constraints for creat-
ing contradictions are fairly loose. Falsifying any
one part of the Base Entailment that stems from
the table creates contradictions. However, the con-
straints for creating entailments are very tight, since
every part of the perturbed statement must be true
for the overall statement to be an entailment. This
warrants that we must find all relevant entities (i.e.
entities stemming from the table) present in the
Base Entailment. Only then can we decide what
to replace, and deterministically call the resultant
statement an entailment.

As shown in Table 1, alignments between a table
and a Base Entailment aren’t always explicit. In
the example "Party A won the most seats", we must
know the alignment between most and the highest
value of seats. While we can employ automatic
matching techniques between the Base Entailment
and the table to capture relevant entities, we can-
not be sure of finding all of them unless explicitly
given. For this reason, we require the source dataset
to provide us with the following as prerequisites:
(a) a table i.e. Premise, (b) a description i.e. Base
Entailment and (c) explicit alignment information
between the table and the Base Entailment for each
relevant entity.

Once we have established the prerequisites, new
NLI instances can be generated by perturbing exist-
ing data in following two ways: (a) Perturbing the
hypothesis and (b) Perturbing the table i.e. premise.

2.1 Perturbing the Hypothesis

We make changes to the hypothesis i.e. the Base
Entailment by replacing entities stemming from
the table (referred to as relevant entities here on)
with other potential candidates. We assume that
the tables are oriented vertically, meaning that the
first row contains headers, and each column has
entities of the same type. A potential candidate
for a relevant entity coming from table cell having
coordinates [rowX, columnY ] can be any other
entity from the same column (Y).

Creating Entailments (E) To create entailments,
we replace all the relevant entities in the given

https://totto-to-tnli.github.io


Original Table (OG)
Party Votes(thou) Seats

Party A 650 120
Party B 570 89
Party C final count TBA 89
Total 1235 298

Counterfactual Table (CF - after swapping cells)
Party Votes(thou) Seats

Party A Party B 650 120
Party B Party A 570 89

Party C final count TBA 89
Total 1235 298

AnnotationOG Party A won 120 out of 298 seats. Party A won the most seats.
EntailmentOG Party B won 89 out of 298 seats. Party B won the second most seats.
ParaphraseOG Out of a total of 298 available seats, Party B secured the second largest

Party B won 89. number of seats.
ContradictionOG Party A Party B won 120 out of 298 Party A Party B won the most seats.

seats. Party A won the most least seats.

We swap Party A and Party B to create a counterfactual table. The contradictions mentioned above
become the new base annotations (AnnotationCT)

AnnotationCF Party B won 120 out of 298 seats. Party B won the most seats.
EntailmentCF Party A won 89 out of 298 seats. Party A won the second most seats.
ParaphraseCF 89 of the 298 available seats were Party A won next to the maximum

secured by Party A number of seats.
ContradictionCF Party B Party A won 120 out of 298 Party B Party A won the most seats.

seats. Party B won the most least seats.

Table 1: Pipeline for generating recasted NLI data. We first create entailments and contradictions from the given base
annotation. We then create a counterfactual table taking a contradiction to be the new base annotation. subscriptOG
represents the “Original” table and subscriptCF represents the “Counterfactual” table. Note that in this example,
ContradictionCF is an EntailmentOG to the original table, but EntailmentCF is a ContradictionOG to it.

Base Entailment with potential candidates. Two
or more relevant entities coming from table cells
in the same row, say [rowX, columnA] and
[rowX, columnB] must be replaced with poten-
tial candidates from column A and B respec-
tively, such that their row coordinate is equal
i.e. [rowY, columnA] and [rowY, columnB] (re-
fer Table 1). Entities coming from “aggregate rows”
(such as the Total row in Table 1) or "headers" must
be left intact.

Creating Contradictions (C) To create contra-
dictions, we replace one or more of the relevant
entities in the Base Entailment with other potential
candidates. We observe that the resultant statement
may accidentally be an entailment. In Table 1,
consider the Base Entailment - “Party B won 89
seats”. Suppose we replace one relevant entity and
get “Party B Party C won 89 seats”. The resultant
statement is still an entailment. To ensure that this
does not happen, we compare the non-replaced en-
tities (“89”) with corresponding cells in the row of
the potential candidate. We also create contradic-

tions by replacing words in the Base Entailment
with their antonyms. This is especially useful for
cases of superlatives and comparatives. An exam-
ple is shown in Table 1.

2.2 Perturbing the Table (Premise)

In this subsection, instead of making changes to
the Base Entailment, we change the premise, i.e.
the tables by swapping two or more table cells.
To further improve model generalization, similar
to (Kaushik et al., 2020; Gardner et al., 2020) we
create example pairs which differ minimally but
have opposite inference labels. These perturbed
tables no longer represent the real world, hence we
call them Counterfactual. Addition of counterfac-
tual data makes the model more robust by inhibit-
ing it to learn spurious patterns between label and
hypothesis/premise. Similar Counterfactual data
also ensure that model is not biased and preferably
grounds on the primary evidence rather than rely-
ing on it over-fitted pre-trained knowledge blindly.
Similar observation was also observed by Müller



et al. (2021) for TabFact dataset.

Creating Counterfactual Tables (CF) We
consider a contradiction C1 formed by re-
placing the highlighted entity from table cell
[rowX, columnY ] with potential candidate
[rowA, columnY ] in the original table (as de-
scribed in Section 2.3). To create a counterfactual
table, we swap cells present at [rowX, columnY ]
and [rowA, columnY ] such that C1 becomes an
entailment to the modified table, and the original
Base Entailment becomes a contradiction to it. We
then create more hypotheses from this as shown in
Table 1.

Hypothesis Paraphrasing (HP) Dagan et al.
(2013) demonstrate that paraphrasing data im-
proves lexical and structural diversity, thus boost-
ing model performance on unstructured NLI. Fol-
lowing Dagan et al. (2013), we paraphrase our data,
since the hypotheses we derive from Base Entail-
ments have similar structures. We use the publicly
available T5 Model (Raffel et al., 2020) trained on
the Google PAWS dataset (Zhang et al., 2019) for
generating paraphrases. We generate the top five
paraphrases and randomly select from them.

3 The ToTTo-TNLI Dataset

Using the framework described in Section 2, we
create the ToTTo-TNLI dataset.

Source dataset We use ToTTo (Parikh et al.,
2020), a controlled table to text generation dataset
with over 120,000 training examples as our source
dataset. ToTTo proposes a controlled generation
task: given a Wikipedia table and a set of high-
lighted table cells, produce a one-sentence descrip-
tion. The dataset construction process requires an-
notators to revise existing candidate sentences from
Wikipedia instead of constructing them, ensuring
a natural and versatile style of writing while also
eliminating annotator bias. Since we create contra-
dictions by perturbing entailments, and we create
counterfactual data such that a given hypothesis
can be both an entailment and a contradiction to
different premises, we ensure that the word distribu-
tions and syntactic structures for both entailments
and contradictions are similar. This prevents the
model from learning spurious cues in hypothesis
sentence for predicting entailment inference.

Table Pre-processing ToTTo provides tables and
a list of highlighted cells as the premise for its

generation task. To make the table data ready for
our use, we perform the following three-step pre-
processing on tables:

1. We conduct all experiments assuming the ta-
bles to be vertically aligned as mentioned in
Section 2. We find that some tables are hor-
izontally aligned (with the first column con-
taining headers). We apply heuristics to auto-
matically identify such tables and flip them as
a pre-processing step.

2. We create a column-wise list of “potential can-
didates” for each table while pre-processing.
For each column, we assign it a data type
(date, alpha, alphanumeric, numeric or ordi-
nals), which is the data type of the majority of
its cells. We ensure that the potential candi-
dates for each column fit its data type. NULL
values and values like “TBA”/ “Undecided”
are removed.

3. We label certain table rows to indicate that
their values must not be replaced as they rep-
resent aggregate values like “Grand total” or
“Average”. We also label rows containing mid-
dle headers.

Hypothesis Pre-processing ToTTo (Parikh
et al., 2020) provides a one-sentence description i.e.
Base Entailment derived from the given highlighted
cells i.e. relevant entities. We perform the follow-
ing two-step pre-processing on the sentences:

US presidential inaugurations (A table Row)
President # 44
Name Barack Obama
Inauguration Date January 20, 2009
Location West Front, US Capitol
Base Entailment :
Obama’s inauguration as the forty fourth
president took place at the United States Capi-
tol in 2009.

Table 2: An example of cases requiring partial matching.

1. While ToTTo (Parikh et al., 2020) provides a
list of relevant cells, it does not provide their
alignments with the Base Entailment. We try
to match every relevant cell with n-grams in
the Base Entailment. We also handle cases
of partial matching. Table 2 shows examples
of names, ordinals, locations and dates that
require partial matching.



2. We label the Base Entailment to indicate
whether they are entailed from single or mul-
tiple rows. We also label sentences contain-
ing superlatives, comparatives and aggregate
words like total, average, mean, etc. Table 1
shows an example of a Base Entailment con-
taining a superlative.

Numbers (#) Train Test Total
Entailments 2.5M 280K 2.9M
Contradictions 2.7M 301K 3M
Unique Tables 103K 6.7K 109K
Counterfactual Tables 284K 17K 301k

Table 3: Statistics for ToTTo-TNLI dataset

We use the method described in Section 2 to cre-
ate NLI data from the ToTTo dataset. Since contra-
dictions are easier to create, we limit their number
such that the ratio of entailments: contradictions
remains close to 1:1. We also limit the genera-
tion of counterfactual tables to three per original
table. Table 3 shows the statistics for the resultant
ToTTo-TNLI dataset.

4 Experiments and Analysis

In this section, we explore the significance of our
data in various capacities. Overall, we aim to an-
swer the following research questions:

1. RQ1: Can ToTTo-TNLI be used as a challeng-
ing test set for existing NLI models?

2. RQ2: Can ToTTo-TNLI be used as aug-
mented data for existing Table NLI tasks like
TabFact (Chen et al., 2020b)?

3. RQ3: How well can ToTTo-TNLI perform in
a zero shot setting?

4.1 Experimental Setup

Model In all experiments, we start with the Table
NLI model developed by Eisenschlos et al. (2020)
as synthetic data augmentation baseline (referred to
as TAPAS + Table-NLI model from here on). The
model is based on TAPAS (Herzig et al., 2020), a
table-based BERT model, and intermediately pre-
trained on automatic rule based generated synthetic
and counterfactual NLI data to recognize entail-
ment. Following, Eisenschlos et al. 2020, we fur-
ther pre-train the TAPAS + Table-NLI model on
ToTTo-TNLI before fine-tuning on the downstream
task.

Dataset We use TabFact (Chen et al., 2020b), a
benchmark Table NLI dataset, as the end task to re-
port results. TabFact is a binary classification task
(with labels: Entail, Refute) on Wikipedia derived
tables. We use the standard train and test splits in
our experiments, and report the official accuracy
metric. TabFact gives simple and complex tags to
each example in its test set, referring to statements
derived from single and multiple rows respectively.
Complex statements encompass a range of aggrega-
tion functions applied over multiple rows of table
data. We report and analyze our results on simple
and complex test data separately.

4.2 Results and Analysis

The following sections describe the results of our
experiments with respect to the research questions
outlined above.

ToTTo-TNLI as Evaluation benchmark (RQ1)
We randomly sample small subsets of our data,
including counterfactual tables, to create three test
sets. We test the publicly available TAPAS+TNLI
model fine-tuned on TabFact (but not pre-trained on
ToTTo-TNLI) on the randomly sampled test sets.
We find that even though TabFact contains both
simple and complex training data, the model gives
a mean accuracy of 65.6% on our test set, more
than 14 points behind its accuracy on the TabFact
test set. It further drops to 58.8% when tested on
counterfactual data.

Analysis: Our data proves to be challenging
when used as evaluation benchmark. We attribute
this to the quality of our data. Our data, unlike Tab-
Fact, is derived from freely written Wikipedia text,
ensuring no repetitive patterns or styles of writing.
Moreover, counterfactual test data contains several
pairs of tables and hypotheses which differ min-
imally but have opposite labels. The NLI model
must be extremely robust to spurious patterns in
order to correctly classify such examples. The drop
in accuracy from 65.6% (on normal test set) to
58.8% (on counterfactual test set) shows lack of
robustness in the model. A natural extension to this
would be to introduce counterfactual data into train-
ing, which is shown to improve generalization in
models (Gardner et al., 2020; Kaushik et al., 2020).

ToTTo-TNLI as Augmented data for TabFact
(RQ2) Since TabFact is a binary classification
task with Entail and Refute labels, our data fits
the setting. We pre-train the TAPAS + Table-NLI



Model Testmean of 3 Testcounterfactual
Base 64.9 58.1
Large 65.6 58.8

Table 4: Accuracies for base and large TAPAS-TNLI
model trained on TabFact and tested on ToTTo-TNLI
simple and counterfactual elavulation sets

model on ToTTo-TNLI data following Eisensch-
los et al. 2020, and then fine-tune on TabFact. We
first show results on the downstream task after pre-
training on raw ToTTo-TNLI data. We show further
improvements with paraphrasing, and addition of
counterfactual tables (and corresponding counter-
factual statements) as described in section 2. Our
best model outperforms the TabFact baseline (Chen
et al., 2020b) by 17 points and the TAPAS + Table-
NLI model by 1.2 points (refer Table 6).

Analysis: Our data, although recasted from a non-
NLI task, is able to boost model performance. Para-
phrasing and addition of counterfactual data push
the accuracies even further, showcasing the impor-
tance of diverse and robust data.

Zero shot performance of ToTTo-TNLI (RQ3)
The TAPAS+TNLI model, once pre-trained on
ToTTo-TNLI, is in principle already a complete
table NLI model. Since we create a versatile and
large scale dataset, we look at the zero-shot accu-
racy of the model on the TabFact test set before fine-
tuning on TabFact. We find that the model gives
>80% accuracy on the simple test set before fine-
tuning. This is 1.4 percent ahead of the baseline in a
supervised setting for simple test data. Our model
also outperforms TAPAS-Row-Col-Rank (Dong
and Smith, 2021), which is a model trained on syn-
thetic NLI data, by 4 points in the zero-shot setting.

Model Testsimple Testfull
TabFact Baselinesup 79.1 65.1
Tapas-row-col-rankw/o sup 76.4 63.3
ToTTo-TNLI (OG)w/o sup 79.8 64.9
+ CF + Paraphrasew/o sup 80.5 65.3

Table 5: Zero-shot accuracies for TAPAS+TNLI model
trained on ToTTo-TNLI and tested on TabFact simple
and full test set. Baseline is taken from TabFact (Chen
et al., 2020b). (Dong and Smith, 2021) gives the zero-
shot accuracy of TAPAS-Row-Col-Rank on TabFact.
Subscriptsup indicates that model is supervised i.e. fine-
tuned on TabFact. Subscriptw/o sup indicates that model
is not fine-tuned on TabFact i.e. it is tested in a zero-shot
setting.

Analysis: These results indicates that ToTTo-
TNLI data generalizes well for NLI tasks that do
not require complex mathematical operations. One
reason behind this could be the nature of the source
dataset. In this paper, we use generation datasets
as the source, which naturally focus more on con-
struction and coherence than complex reasoning.
Recasting other types of datasets (e.g. Q/A, Seman-
tic Parsing) for the purpose of including complex
reasoning are discussed in Section 5.

5 Discussion

Why did we choose ToTTo? We specifically
chose ToTTo to be our source dataset for sev-
eral reasons. First, the dataset uses open-domain
Wikipedia tables, which gives a good generaliza-
tion ability to the recasted dataset. It is also the
most common source for tables for downstream
tasks. Second, to create table descriptions, ToTTo
picks sentences from freely-written Wikipedia text
and allows annotators to only edit them instead
of constructing them. This ensures that the data
is not just human-like, but also naturally sourced,
eliminating annotator bias such as skewed word dis-
tributions and repetitive patterns in writing. Third,
the dataset is large (with over 120k data points)
even before scaling, ensuring a good variety of ta-
bles and descriptions to begin with. Fourth, ToTTo
provides highlighted cell information. ToTTo high-
lights cells which are both explicitly and implicitly
relevant to the description, which is essential for re-
casting. Having implicitly relevant cells also shows
that this data is fairly complex, and requires the
model to learn pattern recognition beyond token-
matching.

What are the limitations of using a generation
dataset? Section 2 highlights the prerequisites
for creating tabular NLI data. Table-to-text gen-
eration datasets fit right into it, making them a
good data source for recasting. One limitation of
using generation data is that the "generated text"
will always entail the premise, never contradict,
so contradiction data is is hard to source naturally.
We also draw some observations from the exper-
imental results. In the zero shot setting (RQ3 in
subsection 4.2 ) where we train our model only on
ToTTo-TNLI and test on TabFact, we observe that
data recasted from ToTTo is not best suited for test
examples requiring complex mathematical reason-
ing. One reason behind this is that ToTTo picks
statements from freely written text on Wikipedia as



Model Testfull Testsimple Testcomplex Testsmall
Table-BERT-Horizontal Chen et al. 2020b 65.1 79.1 58.2 68.1
Logical-Fact-Checker Zhong et al. 2020 71.7 85.4 65.1 74.3
HeterTFV Shi et al. 2020 72.3 85.9 65.7 74.2
Structure-AwareTransformer Zhang et al. 2020 73.2 85.5 67.2 -
ProgVGAT Yang et al. 2020 74.4 88.3 67.6 76.2
TAPAS-Row-Col-Rank Dong and Smith 2021 76.0 89.0 69.8 -
TAPAS + CF + Synthetic Eisenschlos et al. 2020 81.0 92.3 75.6 83.9

Ours - Large
ToTTo-TNLI (OG) 81.9 92.8 75.8 84.1
+ CF + Paraphrase 82.1 93.4 76.1 84.4

Human - - - - 92.1

Table 6: Accuracies on TabFact, including the Human Performance. OG denotes Original data and CF denotes
Counterfactual data. Baseline and human results are taken from (Chen et al., 2020b) and (Zhong et al., 2020).

table descriptions. Freely written descriptive text
is less likely to contain mathematical reasoning as
very few contexts would demand it. This is one
of the limitations of selecting a freely-written nat-
ural data source when compared to task-specific
annotations.

Why recasting over human-annotation or au-
tomatic templates? Manual human annotation
and automatic data generation through templates/
context-free-grammar are the two extremes of data
creation approaches. Each has its own advan-
tages. Human annotation allows generation of high-
quality data in terms of creativity, diversity and flu-
ency. Fully automatic data generation approaches
produce synthetic but highly scalable cost-effective
data in a very short time. In this paper, we aim to
leverage the advantages of both approaches while
eliminating their disadvantages as much as possible.
We want to create data in large volumes without
compromising on its quality. This is where recast-
ing steps in - it allows us to eliminate annotation
cost and time by picking previously annotated data.
Moreover, sourcing data from manually annotated
datasets guarantees human-involvement, which in
turn ensures a creative and linguistically diverse
end product. In our recasting framework, we use
automatic techniques for finding alignments, mak-
ing perturbations to the hypotheses and creating
counterfactual data. The "automatic" nature of
this part of the framework affirms high scalabil-
ity. While the creation of new hypotheses from
given source data is an automatic process, we call
our overall recasting framework semi-automatic
to indicate the human-involvement in the source
dataset.

Future Directions Based on the observations
and discussions, we identify the future directions as
follows. (1) Recasting other non-NLI datasets : We
make our case for choosing ToTTo as our source
dataset in this paper. However, other generation
datasets such as LogicNLG (Chen et al., 2020a)
and Logic2Text (Chen et al., 2020d) can also be
recasted for tabular NLI using our proposed frame-
work, with dataset-specific implementation details.
Tasks such as Question answering or semantic pars-
ing on tables may also prove to be useful sources
for recasting. Question-Answering has been used
previously to create NLI data for unstructured text
(Demszky et al., 2018; Khot et al., 2018). Our
framework can be extended to handle various kinds
of source datasets. (2) Creating complex data from
SQL derived data : Since reasoning over structured
tabular data is similar to performing SQL queries
over databases, datasets for semantic parsing can
be used to create complex data. An advantage of
having structured SQL queries aligned with the hy-
potheses is that we can easily determine what kind
of reasoning/ combination of reasoning underlies
each hypothesis. TaPex (Liu et al., 2021) learns to
execute SQL queries as part of pre-training and is
shown to improve model performances on down-
stream tasks like NLI and Question Answering.

6 Related Work

Inference on Structured and Semi Structured
Data In recent times, inference tasks such as NLI,
Question Answering and Text generation have been
applied to structured data sources like tables. Tab-
Fact (Chen et al., 2020b) and InfoTabs (Gupta et al.,
2020) explore inference as an entailment task. Wik-
iTableQuestions (Pasupat and Liang, 2015), Wik-



iQAA (Abbas et al., 2016) and HybridQA (Chen
et al., 2020c) perform question answering on tables.
ToTTo (Parikh et al., 2020), Yoran et al. (2021) and
LogicNLG (Chen et al., 2020a) explore logical text
generation on tables. Most of these datasets derive
tables from Wikipedia.

Early work on structured data modeling clas-
sify tables into structural categories and embed
tabular data into a vector space (Ghasemi-Gol and
Szekely, 2018; Trabelsi et al., 2019; Deng et al.,
2019). Recent work like TAPAS (Herzig et al.,
2020), TAPAS-Row-Col-Rank (Dong and Smith,
2021) TaBERT (Yin et al., 2020), TABBIE (Iida
et al., 2021), Tables with SAT (Zhang et al., 2020),
TabGCN (Pramanick and Bhattacharya, 2021) and
RCI (Glass et al., 2021) use more sophisticated
methods of encoding tabular data. TAPAS (Herzig
et al., 2020) encodes row/column index and or-
der via specialized embeddings and pre-trains a
MASK-LM model on co-occurring Wikipedia text
and tables.

Data Augmentation and Recasting Generating
cheap and scalable data for the purpose of training
and evaluation has given rise to the use of aug-
mentation and recasting techniques. Previous work
done on recasting data for NLI on unstructured
data includes White et al. (2017) and Poliak et al.
(2018a), which use semantic classification data as
their source. Multee (Trivedi et al., 2019) and Sci-
Tail (Khot et al., 2018) recast Question Answering
data for entailment tasks. Demszky et al. (2018)
proposes a framework to recast QA data for NLI for
unstructured text. For tabular text, Dong and Smith
(2021) present an effort to re-use text generation
data for evaluation.

Data augmentation in NLP refers to methods
used to increase the amount of data by adding
slightly modified copies of already existing data
or newly created synthetic data from existing data.
Synthetic data generation for augmentation of train-
ing data for unstructured text is explored in Alberti
et al. (2019); Lewis et al. (2019); Wu et al. (2016);
Leonandya et al. (2019), and for Tabular NLI in
specific is shown in Geva et al. (2020); Eisensch-
los et al. (2020). Salvatore et al. (2019) and Dong
and Smith (2021) generate synthetic data for eval-
uation purposes. Kaushik et al. (2020); Gardner
et al. (2020) show that providing counterfactual
data, especially “minimal pairs” of examples (ex-
amples that differ only slightly but have opposite
labels) can help to improve generalization in mod-

els. Müller et al. (2021) demonstrate that adding
counterfactual hypotheses enhances model perfor-
mance on the TabFact dataset. Data augmenta-
tion for tables is also explored for computer vision
tasks such as structure recognition. TabAug (Khan
et al., 2021) uses deletion/replication operations
on rows and columns as perturbations. Due to
varying height/width of different cells, TabAug
performs deletion/replication on entire rows or
columns. Since we don’t deal with the visual struc-
ture but the textual content of the tables, we are able
to make perturbations on a cellular level with oper-
ations like swapping. Closer to our work, Sellam
et al. (2020) use perturbations of Wikipedia sen-
tences for intermediate pre-training for BLEURT(a
metric for text generation) and Xiong et al. (2020)
replace entities in Wikipedia by others with the
same type for a MASK-LM model objective.

Table Pre-training Existing works explore pre-
training through several tasks such as Mask Col-
umn Prediction in TaBERT (Yin et al., 2020), Multi-
choice Cloze at the Cell Level in TUTA (Wang
et al., 2021b), Structure Grounding (Deng et al.,
2021) and SQL execution (Liu et al., 2021). Our
work is closely related to Eisenschlos et al. (2020),
which uses two pre-training tasks over Synthetic
and Counterfactual data to drastically improve ac-
curacies on downstream tasks. Pre-training data
is either synthesized using templates (Eisenschlos
et al., 2020), mined from co-occuring tables and NL
sentence contexts (Yin et al., 2020; Herzig et al.,
2020), or directly taken from human-annotated
table-NLI datasets (Deng et al., 2021; Yu et al.,
2021). In our study, we employ pre-training data
that has been automatically scaled from existing
non-NLI data.

7 Conclusion

In this paper we introduced a semi-automatic frame-
work for recasting existing table-to-text generation
data for tabular NLI. We make the case for choos-
ing the recasting route due to its cost effectiveness,
scalability and ability to retain human-like diversity
in the resultant data. Finally, we leverage our frame-
work to generate NLI data for existing table to text
dataset namely ToTTo (Parikh et al., 2020). In ad-
dition, we demonstrated that our created dataset
could be utilized as an evaluation set as well as for
data augmentation to enhance performance on the
Tabular NLI task on TabFact (Chen et al., 2020b).
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