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Abstract

Recent work has shown that predicate-
argument label representations from seman-
tic role labeling (SRL) can be concatenated
with BERT representations to improve natu-
ral language understanding tasks such as natu-
ral language inference (NLI) and reading com-
prehension. Two natural questions that arise
are whether infusing SRL representations with
BERT 1) improves model performance and
2) increases the model’s linguistic awareness.
This paper aims at answering both questions
with a case study on the NLI task. We start by
analyzing whether and how infusing SRL infor-
mation helps BERT learn linguistic knowledge.
We compare model performance on two bench-
mark datasets, SNLI and MNLI. We also con-
duct in-depth analysis on two probing datasets,
Breaking NLI and HANS, which contain abun-
dant examples where SRL information is ex-
pected to be helpful. We found that combin-
ing SRL representations with BERT represen-
tations does outperform BERT-only represen-
tations in general, with better awareness in lex-
ical meaning and world knowledge but not in
logic knowledge. We also found that infusing
SRL information via predicate-wise concatena-
tion with BERT word representations followed
by an interaction layer is more effective than
sentence-wise concatenation.1

1 Introduction

Recent advances in Transformer-based language
models like BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019b), have surpassed the perfor-
mance of non-expert humans when fine-tuned and
evaluated on various benchmark datasets such as
GLUE (Wang et al., 2018), SuperGLUE (Wang
et al., 2019a). However, performing well on
benchmark datasets does not mean the model has

∗∗ Work done during an internship at IBM research
†† Work done while at IBM Research

1Our data and code can be found at https://github.
com/System-T/LingBert.

achieved human-like natural language understand-
ing (NLU) competence (Naik et al., 2018; Talman
and Chatzikyriakidis, 2019). It has been found
that the transformer models when fine-tuned for a
particular tasks are prone to adopt shallow heuris-
tics (McCoy et al., 2019). For instance, in a natu-
ral language inference (NLI) system — a task of
determining whether a premise sentence entails a
hypothesis sentence (Dagan et al., 2005; MacCart-
ney and Manning, 2009), a model is more likely
to assign a label “contradiction" if the word not is
present in the hypothesis and assign a label “entail-
ment" if all words in a hypotheses are present in
the premise (Naik et al., 2018).

Consider the following sentence pair where hy-
pothesis contradicts premise:

P: The lawyers were recommended by
the doctor
H: The lawyers recommended the doctor

A RoBERTa model fine-tuned on MNLI dataset,
benchmark NLI dataset (Williams et al., 2018),
completely ignores the semantic meaning of these
sentences and predicts entailment2. This wrong pre-
diction indeed happened because the model learns
to generalize over the simple heuristic present in the
training datasets that is predicting entailment when
there is 100% lexical overlap between premise and
hypothesis. At this point, an important question
arises: Does providing semantic information to the
language models in the form of external knowledge
enhance models’ linguistic knowledge, if yes, how?

Semantic role labeling (SRL) is a shallow se-
mantic parsing task that identifies “who did what to
whom when, where etc” for each predicate in a sen-
tence, called predicate-argument structure. SRL
represents the semantic meaning of a sentence and

2https://demo.allennlp.org/
textual-entailment/roberta-mnli/s/
the-lawyers-were-recommended-doctor/
P8E4F0W1U9
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this information is essential to natural language un-
derstanding (Palmer et al., 2005; He et al., 2017;
Kasai et al., 2019; Jindal et al., 2020; Marcheggiani
and Titov, 2020). For the sentence pair above, The
semantic roles associated with the verb recommend
are as follows:

P: [ARG1 : The lawyers] were [V : rec-
ommended] by [ARG0 : the doctor]
H: [ARG0 : The lawyers] [V : recom-
mended] [ARG1 : the doctor]

This semantic information clearly distinguishes the
Recommender ARG0 in the premise and the hypoth-
esis: the doctor is the Recommender in the premise
and lawyer is the Recommender in the hypothesis.
In this example, both the premise and the hypoth-
esis have identical predicate-argument structures
with the same predicate but swapped arguments.
We expect that infusing SRL information would be
helpful in such cases as it highlights the difference
in the arguments, and thus the model is directed
to the lexical meaning difference encoded by the
tokens to correctly classify the example.

Recently, Zhang et al. (2019b) propose Sem-
BERT to incorporate representations of semantic
role labels (SRLs) into the BERT representations.
In SemBERT, both representations were processed
independently and get concatenated for fine-tuning.
This concatenation alone shows slight improve-
ment over BERT on NLU benchmark datasets but
fails to improve the model’s linguistic awareness as
shown by its poor performance on probing datasets.
In this work, we propose a simple yet more effec-
tive improvement over SemBERT to improve the
model’s awareness of various language phenom-
ena such as lexical knowledge, world knowledge.
Specifically, our main contributions include:

• We present detailed analysis of SRL-infused
models on two probing datasets, Breaking NLI
(Glockner et al., 2018) and HANS (McCoy et al.,
2019) to understand what cases benefit or suffer
from the infused SRL information.

• We propose Linguistic BERT (LingBERT) that
concatenates predicate-wise SRL representations
with BERT representations followed by an inter-
action layer. We demonstrate its effectiveness
over existing baselines on two commonly used
NLI benchmark datasets, SNLI and MNLI.

• We found that LingBERT does learn lexical and
world knowledge better. However, how to lever-
age SRL information to improve the model’s

awareness of other linguistic phenomena remains
an open challenge.

2 Motivation

Semantic role labeling in the PropBank format la-
bels syntactic constituents for each predicate in the
sentence with the corresponding generalized proto-
thematic roles such as ARG0 , ARG1 etc. Therefore,
though shallow, SRL provides explicit syntactic
and semantic knowledge.

Existing studies (Naik et al., 2018; Talman and
Chatzikyriakidis, 2019) point out that though large-
size pre-trained language models can achieve good
performance on classification tasks, such models
are still far from a real understanding of language.
Does incorporating SRL information explicitly at
the fine-tuning stage increase the model’s linguistic
awareness and lead to performance improvement?
This paper aims at answering this question by com-
paring the performance of BERT with models in-
corporating semantic role labels into BERT on two
benchmark NLI datasets, SNLI and MNLI. We fur-
ther analyze whether incorporating the additional
SRL information increases the models’ linguistic
awareness by analyzing model performance on two
probing datasets, Breaking NLI and HANS, which
contain abundant cases where SRL information is
expected to be helpful.

2.1 Issues with NLI Benchmark Datasets

Two commonly-used NLI benchmark datasets,
SNLI3 (Bowman et al., 2015) and MNLI4

(Williams et al., 2018) are created via crowdsourc-
ing. The models fine-tuned on these datasets per-
form well on their corresponding test sets. How-
ever, such models tend to adopt simple heuristics
from the training data that are effective only for
most frequent example types (McCoy et al., 2019).
In other words, a model fine-tuned on SNLI train-
ing set may perform excellent (91.0% accuracy)
on the corresponding test set but perform poorly
(46.3% accuracy, in Table 5) when tested on a spe-
cific heuristics. Therefore, it is imperative to test
whether the fine-tuned models generalize over
certain heuristics.

3https://nlp.stanford.edu/projects/
snli/

4https://cims.nyu.edu/~sbowman/
multinli/
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P The family is drinking wine
O O B-V O O

B-ARG0 I-ARG0 O B-V B-ARG1

H1 The family is drinking vodka
O O B-V O O

B-ARG0 I-ARG0 O B-V B-ARG1

H2 The family is drinking gin
O O B-V O O

B-ARG0 I-ARG0 O B-V B-ARG1

Table 1: World knowledge heuristic examples from
Breaking NLI dataset. SRLs (in blue) are expected to
be helpful for such examples. The ground-truth NLI
label for the premise and each hypothesis is contradic-
tion. However, BERT predicts neutral for P-H1, and
contradiction P-H2. Our proposed method classifies
both cases correctly.

2.2 Probing Information

Various probing datasets have been developed
(Glockner et al., 2018; McCoy et al., 2019) to an-
alyze whether the trained model has learned the
linguistic knowledge and reasoning generalization
that humans resort to for the same task. Though the
model has learned some linguistic features (Gold-
berg, 2019; Liu et al., 2019a; Hewitt and Manning,
2019; Clark et al., 2019; Lin et al., 2019; Tenney
et al., 2019; Warstadt and Bowman, 2020; Man-
ning et al., 2020; Ettinger, 2020; Michael et al.,
2020), the poor performance of fined-tuned BERT
models on the probing datasets indicates that it is
not enough linguistic knowledge. We evaluate the
fine-tuned models on two probing datasets: Break-
ing NLI5 (Glockner et al., 2018) and HANS6 (Mc-
Coy et al., 2019). Though not directly created to
probe about SRL information, the two datasets con-
tain abundant examples on different heuristics for
which SRL information is expected to be helpful.

2.2.1 Lexical Meaning and World Knowledge

Breaking NLI provides examples to test whether
the trained model has learned proper lexical mean-
ing and world knowledge. It contains instances
where the premise and hypothesis are identical ex-
cept for one token as shown in Table 1. Infusing
SRL information is expected to be helpful for this
dataset because the extra predicate-argument infor-
mation enforces the BERT model to focus more on
distinctions encoded in the lexical meaning.

5https://github.com/BIU-NLP/Breaking_
NLI

6https://github.com/tommccoy1/hans

2.2.2 Lexical Overlap Heuristic
Lexical overlap is the first type of heuristic which
the HANS dataset intends to probe about. It con-
tains examples where hypotheses are constructed
from all the words in premises. Both Breaking NLI
and HANS provide examples to test this heuris-
tics. Table 2 lists examples from the lexical over-
lap heuristics in Row 1. As can be seen, both the
premise and the hypothesis have identical predicate-
argument structures, where both have the same
predicate with only the arguments swapped. We
would expect infusing SRLs to be helpful in this
case because it highlights the similarity in the
predicate-argument structure of the text and thus
the model is directed to the lexical meaning differ-
ence encoded by the tokens in order to correctly
classify the example.

2.2.3 Subsequence Heuristic
Subsequence heuristic is the second type of heuris-
tic HANS intends to probe about. In the subse-
quence heuristic example (Table 2 Row 2), the
predicate-argument structures of the premise and
the hypothesis are quite different. Here the premise
has two predicates whereas the hypothesis has only
one. This kind of tricky cases where the hypothesis
is a sub-string of the premise is relatively hard for
NLI models to learn. We also expect the predicate-
argument structure to be helpful here because it
highlights the syntactic difference of identical to-
kens: the actors is ARG1 for the predicate believe
in the hypothesis while it is only a component of
ARG1 for the same predicate in the premise.

2.2.4 Constituent Heuristic
Constituent heuristic is the third type of heuris-
tic the HANS dataset intends to probe about. It
contains examples where the premise entails all
complete subtrees of its parse tree as shown in
Table 2 Row 3. In comparison to other heuris-
tics, the generalization over constituent heuristic
examples requires more logical information rather
than just predicate-argument structures. For the
PP_on_subject sub-case of constituent, span-base
SRL actually introduces more misleading informa-
tion. Therefore, we do not expect the SRL informa-
tion to be helpful for this case.

3 How to Incorporate Semantic
Knowledge?

In last section we describe various heuristics where
vanilla transformer model does not generalize well

https://github.com/BIU-NLP/Breaking_NLI
https://github.com/BIU-NLP/Breaking_NLI
https://github.com/tommccoy1/hans


Heuristic non-entailment Example

P: The judge encouraged the athlete .
Lexical B-ARG0 I-ARG0 B-V B-ARG1 I-ARG1 O

overlap H: The athlete encouraged the judge .
B-ARG0 I-ARG0 B-V B-ARG1 I-ARG1 O

Subsequence

P: The scientists believed the actors saw the artists .
B-ARG0 I-ARG0 B-V B-ARG1 I-ARG1 I-ARG1 I-ARG1 I-ARG1 O

O O O B-ARG0 I-ARG0 B-V B-ARG1 I-ARG1 O

H: The scientists believed the actors .
B-ARG0 I-ARG0 B-V B-ARG1 I-ARG1 O

Constituent

P: Hopefully the president introduced the doctors .
B-ARGM-ADV B-ARG0 I-ARG0 B-V B-ARG1 I-ARG1 O

H: The president introduced the doctors .
B-ARG0 I-ARG0 B-V B-ARG1 I-ARG1 O

Table 2: non-entailment examples from HANS with SRLs (in blue) tags.

when fine-tuned on NLI datasets. In this section,
we describe the limitations of existing semantic
aware transformer models and describe the strategy
to further improve their performance.

We follow Devlin et al. (2019) to for-
mulate textual entailment as a classification
problem and design the input to the BERT
model as [CLS] Pi [SEP] Hi [SEP], where
Pi = {w1

pi, w
2
pi, · · · , w

np

pi } is the premise and
Hi = {w1

hi, w2
hi, · · · , wnh

hi } is the hypothesis.
The final hidden layer vector representation of the
first symbol in the sequence [CLS] is used as input
to the classification layer at the fine-tuning stage.

Zhang et al. (2019b) propose SemBERT to con-
catenate SRL embeddings with BERT representa-
tions. In addition to vanilla BERT embeddings,
they apply an out-of-box span-based semantic role
labeling model to label the premise and hypoth-
esis text with SRLs in PropBank format. If the
premise or the hypothesis is associated with mul-
tiple predicate-argument structures, a linear layer
is used to convert the multiple semantic role labels
associated with each token into one SRL embed-
ding representation. Then they concatenate the
BERT representation with the SRL representation
tokenwise, and use the first token [CLS] represen-
tation for classification. We refer to the SemBERT
approach as sentence-wise concatenation of the
semantic role label representation and the BERT
token representation.

We find the way SemBERT incorporates SRL
information needs improvement for two reasons:
(1) Semantic roles are predicate-specific. There-
fore, fusing all the semantic role labels associated
with a token without considering the predicate at
all introduces too much noise. (2) SemBERT lacks
interaction between lexical meaning (represented
by BERT representation) and SRL, which makes

the contribution of SRL minor. Therefore, we pro-
pose Linguistic BERT(LingBERT) that performs
predicate-wise concatenation and interaction of
SRL representation with BERT word representa-
tion. We refer to our approach as predicate-wise
concatenation with interaction. Specifically, we
concatenate SRL representations with BERT word
representations per predicate-argument structure,
and add a linear layer to allow interaction between
the word representation and the SRL embeddings.
Figure 1 provides an illustration of our model ar-
chitecture.

We apply the same out-of-box semantic role la-
beling model as SemBERT to label the premise
and the hypothesis.7 We obtain multiple predicate-
argument structures for both the premise and
the hypothesis, equal to the number of pred-
icates in respective text. For a sentence
S = {w1, w2, · · · , wn} containing K predi-
cates, we obtain K predicate-argument structures
[{l11, l21, · · · , ln1}, · · · , {l1K , l2K , · · · , lnK}], where ljk
represents a semantic role label for token j spe-
cific to the kth predicate. We represent the SRLs
as embeddings and use a lookup table to map
the SRLs to vectors, which are learned during
training. Therefore, for sentence S we obtain
[{v11, v21, · · · , vn1 }, · · · , {v1K , v2K , · · · , vnK}] as SRL
representations.

For each token wj in sentence S we obtain its
fused embedding based on its BERT representa-
tion and the corresponding SRL representations
as ({ej ◦ vj1}, {ej ◦ v

j
2}, · · · , {ej ◦ v

j
K}), where ◦

represents concatenation. For completeness and
simplicity, we assume a “O " label for [CLS] and
[SEP] tokens. This fused embedding is passed
through a linear layer to increase interaction among

7Note that the SRL model is used only as a data pre-
processing tool and is not trained, same for SemBERT.



Figure 1: LingBERT architecture

BERT and SRL representations, and the represen-
tation of the first input token [CLS] is then used
as an input to the classifier.

Our model differs from SemBERT (Zhang et al.,
2019b) in two aspects (see Figure 1for an illustra-
tion of our model). First, LingBERT concatenates
the BERT representation for each token with the
SRL representation for each predicate-argument
structure respectively, rather than fuses SRLs with
each token disregarding the lexical meaning of the
predicate as SemBERT does. LingBERT is ex-
pected to be more effective than SemBERT be-
cause each predicate-argument structure is labeled
with respect to the predicate (Palmer et al., 2005).
Second, in SemBERT, the interaction between the
BERT representation and the SRL embedding is
only by concatenation. In contrast, LingBERT adds
a linear layer after concatenating BERT representa-
tions and SRL representations to allow the interac-
tion between them.

4 Experiments and Results

4.1 Model Setup

The pre-trained English BERT-base-uncased model
is used in all experiments. For BERT fine-tuning,
we used the Transformer (Vaswani et al., 2017)
implementation by Wolf et al. (2019)8. For Sem-
BERT, the implementation by Zhang et al. (2019b)9

is used. LingBERT is implemented based on Sem-
BERT. We adopt the same hyperparameters as Sem-
BERT in all experiments. We trained each model
multiple times and report the average accuracy. Fol-

8https://github.com/huggingface/
transformers

9https://github.com/cooelf/SemBERT

lowing Zhang et al. (2019b), we obtain span-based
10 SRLs from AllenNLP (Gardner et al., 2018).

4.2 Overall Performance

As shown in Tables 3 and 4, both SRL-infused mod-
els, SemBERT and LingBERT, outperform BERT
on SNLI test set and MNLI development sets. This
result confirms that infusing SRL representations
with BERT representations does improve the
model’s performance on NLI.

4.2.1 SNLI
LingBERT outperforms all semantic aware models
including SemBERT on SNLI test set and on both
the probing datasets, Breaking NLI and HANS (see
Table 3). The evident advantage of LingBERT over
SemBERT confirms that predicate-wise concate-
nation with interaction is more effective than
sentence-wise concatenation.

4.2.2 MNLI
Similar to SNLI we observe that the semantic
knowledge helps improve the model performance
over simple BERT baselines when fine-tuned on
MNLI dataset, in Table 4. We also observe a slight
performance drop for LingBERT when compared
with SemBERT on MNLI dev set, we explain this
behaviour in Section 5.2.

4.3 Performance on Probing Datasets

4.3.1 Breaking NLI
Independent of training dataset, LingBERT out-
performs BERT and SemBERT, achieving SoTA

10We obtain BIO tags for each token in the sentence.
Throughout this work we use span-based SRLs.
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Model
External SNLI

HANS
Breaking

knowledge test NLI

SNLI fine-tuned

BERTBase - 90.30 58.83 93.84
(Pang et al., 2019) SynParse 90.50 53.20 -
(Zhang et al., 2019a) Semantic 89.60 - -
(Kapanipathi et al., 2020) KG 85.97 - -
SemBERTBase Semantic 90.59∗ 57.89 93.16
LingBERTBase Semantic 90.92 59.96 94.04

Table 3: Performance summary and comparison with
other models when fine-tuned on SNLI. Best perfor-
mance is highlighted in bold among SRL-infused mod-
els. Underline shows the best performance among
all models. Synparse means syntactic parse, KG
means knowledge graphs, and Semantic means Seman-
tic Role Label information is used as external knowl-
edge. ∗Though we use the same implementation and
hyperparameters, we can not reproduce SemBERT re-
ported performance.

Model
External MNLI MNLI

HANS
Breaking

knowledge dev-m dev-mm NLI

MNLI fine-tuned

BERTBase - 84.04 84.54 66.19 92.60
(Pang et al., 2019) SynParse 84.70 84.7 - -
(Cengiz and Yuret, 2020) Semantic - - 66.0∗ -
SemBERTBase Semantic 84.26 85.05 53.44 92.97
LingBERTBase Semantic 84.21 84.70 58.58 93.29

Table 4: Performance summary and comparison with
other models when fine-tuned on MNLI. Best perfor-
mance is highlighted in bold among SRL-infused mod-
els. Underline shows the best performance among all
models. MNLI dev-m refers to the matched MNLI de-
velopment set, i.e. data derived from the same sources
as those in the MNLI training set; MNLI dev-mm refers
to the mismatched MNLI development set, i.e. data de-
rived from sources which are different from those in the
MNLI training set. Synparse means syntactic parse, and
Semantic means Semantic Role Label information is
used as external knowledge. (∗ This paper uses HANS
development set as validation set for MNLI training.)

accuracy 94.04% on Breaking NLI dataset. This in-
dicates that LingBERT has learned lexical meaning
and world knowledge better.

As mentioned in Section 2.2, the premise and
hypothesis in this dataset have highly similar or
identical predicate-argument structures. Table 1
provides examples where LingBERT consistently
predicts correct labels while BERT performs in-
consistently. Though in both examples only the
objects of the verb differ, BERT model predicts
neutral for the P-H1 and predicts contradiction for
the P-H2. The key to the correct prediction is to
know the lexical meaning difference between wine
and vodka, and between wine and gin. LingBERT,
with SRL infused, captures the similarity between

the premise and hypothesis, and learns the lexical
meaning and world knowledge distinction to make
the correct prediction.

4.3.2 HANS
This dataset was created by manipulating the syn-
tactic structure and constituents with prescribed
rules. Better performance of a model on HANS
means that the trained model is less vulnerable to
lexical overlap, subsequence, or constituent heuris-
tics present in the training data. As analyzed Sec-
tion 2.2, we expect SRL information to help with
cases of the lexical overlap and subsequence heuris-
tics.

From Tables 3 and 4, we made the following
observations for HANS dataset:

1. While LingBERT consistently outperforms
SemBERT on HANS, it only outperforms
BERT when fine-tuned on SNLI.

2. The BERT model fine-tuned on MNLI outper-
forms the BERT model fine-tuned on SNLI on
HANS. However, SemBERT and LingBERT
show the opposite tendency.

The detailed analysis of these observations are pre-
sented in the subsequent sections.

5 Detailed Analysis

In Section 2, we observe that there are some heuris-
tics where infusing SRL information is useful. In
this section, we analyze the performance of the
SRL infused models on different heuristics in detail
and analyze the effect of different training datasets
on model performance.

5.1 Heuristic Level Analysis
When fine-tuned on SNLI (see Table 3), LingBERT
achieves the best overall performance on HANS,
followed by BERT and SemBERT. Considering
that every model classifies most examples as en-
tailment and achieves an accuracy of ∼99% for the
ground-truth entailment examples, we examine the
models trained on SNLI training set and evaluated
on the HANS non-entailment examples for each
heuristic type and its sub-cases to better interpret
their performance. Details of model performance
for these examples are summarized in Table 5.

5.1.1 Lexical Overlap Heuristic
As expected, LingBERT outperforms other mod-
els by a big margin on every sub-case of the lexi-



HANS Heuristics non-entailment Examples BERT SemBERT LingBERT

Lexical Overlap Heuristic 46.33 43.02 54.40

ln_conjunction P1: The authors recognized the president and the judges .
H1: The judges recognized the president . 40.93 33.57 50.63

ln_passive P2: The lawyers were recommended by the doctor .
H2: The lawyers recommended the doctor . 17.90 30.77 33.00

ln_preposition P3: The senators behind the lawyer contacted the student .
H3: The student contacted the senators . 58.37 49.20 60.37

ln_relative_clause P4: The student who the senators thanked stopped the scientist .
H4: The scientist stopped the student . 46.67 40.20 52.63

ln_subject/object_swap P5: The student saw the managers .
H5: The managers saw the student . 67.77 61.37 75.37

Subsequence Heuristic 4.92 3.69 4.01

sn_NP/S P1: The author heard the presidents recommended the secretary .
H1: The author heard the presidents . 0.70 0.03 0.53

sn_NP/Z P2: Although the managers hid the actors saw the athlete .
H2: The managers hid the actors . 9.67 6.43 5.27

sn_PP_on_subject P3: The student near the secretaries supported the judges .
H3: The secretaries supported the judges . 9.03 6.9 7.83

sn_past_participle P4: The artist avoided the author paid in the laboratory .
H4: The author paid in the laboratory . 0.80 0.27 0.80

sn_relative_clause_on_subject P5: The scientists that introduced the senator avoided the actor .
H5: The senator avoided the actor . 4.40 4.83 5.63

Constituent Heuristic 5.2 2.44 3.03

cn_adverb P1: Hopefully the presidents introduced the doctors .
H1: The presidents introduced the doctors . 0.20 0.00 0.00

cn_after_if_clause P2: Unless the professor slept , the tourist saw the scientist.
H2: The tourist saw the scientist . 0.00 0.00 0.00

cn_disjunction P3: The actor recommended the lawyers , or the managers
stopped the author .
H3: The actor recommended the lawyers . 0.33 0.03 0.00

cn_embedded_under_if P4: If the doctors mentioned the judge , the president
thanked the student .
H4: The doctors mentioned the judge . 25.3 12.2 15.1

cn_embedded_under_verb P5: The lawyers believed that the tourists shouted .
H5: The tourists shouted . 0.13 0.00 0.00

Table 5: Performance on HANS non-entailment examples by models fine-tuned on SNLI. Examples in black and
normal font are where BERT made wrong predictions and LingBERT made correct predictions. Examples in blue
and italics are where none of the three models made the correct prediction. The last three columns are the accuracy
in % on the non-entailment examples by BERT, SemBERT, and LingBERT respectively.

cal overlap heuristic (see Table 5 Row 1), indicat-
ing the contribution of effectively infusing SRL
representations. In contrast, SemBERT, which
also incorporates SRL representations, fails to out-
perform BERT for all sub-cases except for one
(In_preposition). This observation supports that
predicate-wise concatenation with interaction is
more effective to infuse SRL than sentence-wise
concatenation.

Column 2 lists examples for each sub-case.
The premise and hypothesis for all examples
consist of one clause (except the premise for
the ln_relative_clase example) with very similar
predicate-argument structures. The similarity and
simplicity of the predicate-argument structures of
the premise and the hypothesis seem to be related
to the contribution of SRL in LingBERT. When
the premise and hypothesis have similar predicate-

argument structures, incorporating SRL represen-
tations emphasizes the similarity between them,
thus enforces BERT to learn to distinguish lexi-
cal meaning and world knowledge.

5.1.2 Subsequence Heuristic
All models perform poorly for the subsequence
heuristic as shown in Table 5 Row 2. Over-
all, BERT outperforms SemBERT and Ling-
BERT, though not a single model improves con-
sistently over all the sub-cases. All exam-
ples (except sn_relative_clause_on_subject and
sn_PP_on_subject) were created to confuse the
model by leveraging the syntactic flexibility of the
predicates. For instance, P1-H1 leverages the syn-
tactic flexibility of hear that the ARG0 of this verb
can be a clause as in P1 or a noun phrase as in H1.
P2-H2 leverages the syntactic flexibility of hide that
this verb can be intransitive as in P2 or transitive



as in H2. Against our expectations discussed in the
section on probing informa, SRL-infused models
almost consistently perform worse than BERT. The
poor performance of such models demands better
methods of incorporating SRL embeddings with
BERT representations.

Note that on sn_PP_on_subject sub-case,
we observe the expected performance drop
when SRL representations are infused with
BERT representations. This drop is because
the span-based predicate-argument structure
introduces misleading information. For exam-
ple, the predicate-argument structure of the
premise of P3-H3 in Table 5 Row 2 is [ARG0
The student near the secretaries]
[V supported] [ARG1 the judges]
and that for the hypothesis is [ARG0 The
secretaries] [V supported] [ARG1
the judges]. In both the premise and the
hypothesis, the secretaries is within the ARG0

span, though in the premise it’s only the modifier of
the ARG0 which is not distinguished in span-based
semantic role labeling. This information misleads
the span-based SRL infused models to predict
entailment opposed to non-entailment. We suspect
head-based SRL information may improve the
performance on the examples of this sub-case,
which can be explored in future work.

5.1.3 Constituent Heuristic
As discussed earlier, we do not expect to observe
LingBERT generalize over this heuristic, because
SRL can not provide the critical logical knowledge
to improve model performance on this heuristic. In
Table 5 Row 3, all models perform poorly on this
heuristic with basically no difference. For all the
constituent heuristic examples, the truth condition
of the premise is changed either by adding certain
particular words or by using certain syntactic struc-
tures with particular connecting words. The words
through which the premise’s truth condition gets
reversed are marked out in bold font in these ex-
amples. The poor performance of LingBERT and
SemBERT for these examples indicates that incor-
porating semantic role labels cannot help BERT
learn logic knowledge as expected.

5.2 Effect of Training Data

Tables 3 shows that there is performance boost
on HANS in LingBERT when it is fine-tuned on
SNLI. However, from the performance on HANS
presented in Table 4, we observe the opposite for

fine-tuning with MNLI. To understand why there
is the opposite pattern, we examine how the fol-
lowing factors associated with training data may
influence the effect of infusing SRL representa-
tions: (1) complexity of the training data, and (2)
quality of semantic role labels.

5.2.1 Complexity of Training Dataset
From Tables 3 and 4, we observe that the perfor-
mance of the BERT model on HANS varies largely
with the training dataset. Therefore, we start by
analyzing the effect of training data complexity
on the fine-tuned BERT model. Since MNLI has
premises of more diversified genres with longer and
more complex sentences than SNLI, we hypothe-
size that the BERT model fine-tuned on longer and
more complex sentences is less likely to overfit the
three types of heuristics in HANS. Conversely, the
BERT model fine-tuned on SNLI is more likely
to overfit to these heuristics. Hence, the contribu-
tion of the SRL representations incorporated in the
BERT representations may outweigh the noise it
introduces when fine-tuned on SNLI in compari-
son to MNLI where BERT representations alone
better generalize over such heuristics. To verify the
hypothesis that longer and more complex NLI train-
ing data tend to have fewer supporting cases for
HANS heuristics, we fine-tune BERT on the com-
bined ANLI training set.11 ANLI (Nie et al., 2020)
is a newly created NLI dataset with much longer
and more complex premises from more diversi-
fied domains than MNLI. However, BERT model
fine-tuned on this dataset achieves only 56.44%
accuracy on HANS, even lower than BERT fine-
tuned on SNLI (58.83%). Therefore, we rule out
the possibility that the complexity of training data
is the only contributor towards the better perfor-
mance of MNLI fine-tuned BERT model.

5.2.2 Quality of SRL
Similar to SNLI fine-tuned LingBERT we expect to
see performance improvement on MNLI fine-tuned
LingBERT over BERT. However, though Ling-
BERT outperform SemBERT, we observe an ob-
vious performance drop when compared to BERT.
To understand it further we hypothesize that the
noise in the SRL process may get carried over to
the downstream NLI task with LingBERT and led
to the performance drop with the infusion of SRL
representations. To test this hypothesis, we com-
bined the labeled SNLI training data and the la-

11https://dl.fbaipublicfiles.com/anli/anli_v1.0.zip



beled MNLI training data respectively with the
CoNLL 2012 SRL training data (Pradhan et al.,
2013)12 to train an in-house SRL model. We also
train the in-house SRL model on CoNLL 2012
training data only. When evaluated on the SRL
test set, the F1-score for the SRL-data-only, SRL-
data+labeled-SNLI, and SRL-data+labeled-MNLI
training are 88%, 76.39% and 78.89% respectively.
Given that SRL models perform similarly over
SNLI and MNLI, SRL quality is unlikely to be
the reason for the difference. Therefore, we re-
fute both hypotheses and we plan to explore this
direction further in the future.

6 Related Work

It has been acknowledged that though neural mod-
els can surpass human performance on large bench-
mark datasets, they are still far from actually un-
derstanding the language. This is true for NLI
(Naik et al., 2018; Talman and Chatzikyriakidis,
2019; Gururangan et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018; Geva et al., 2019; Nie et al., 2020)
and other tasks like question answering (Agrawal
et al., 2016; Mudrakarta et al., 2018), reading com-
prehension (Kaushik and Lipton, 2018), common-
sense reasoning (Branco et al., 2021) etc.

SNLI (Bowman et al., 2015) and MNLI
(Williams et al., 2018) are two large benchmark
datasets which motivate the application of neural
models developed for the natural language infer-
ence task, but the performance of neural models
rapidly reach the ceiling level on these two datasets.
Adversarial NLI (Nie et al., 2020) was developed
with a never-end learning scenario in response
to the rapid model improvement. Various prob-
ing datasets have been developed to probe about
whether the model has learned certain aspects of in-
formation humans usually resort to for conducting
the same task. For example, Breaking NLI (Glock-
ner et al., 2018) probes about whether the model
can distinguish lexical meaning and world knowl-
edge. HANS (McCoy et al., 2019) was created by
manipulating the syntactic structure of the premise
and the hypothesis to investigate whether the model
relies on heuristics or real linguistic understanding.
IMPPRES (Jeretic et al., 2020) was developed to in-
vestigate whether the model has learned pragmatic
inferences like presupposition and implicature.

12Since CoNLL 2012 SRL dataset contains multiple gen-
res, we combined the data for training in order to alleviate
the genre difference between SNLI and MNLI and make the
comparison more reliable.

This paper is closely related to work on incor-
porating explicit linguistic or external knowledge
to contextual word representations (Zhang et al.,
2019b; Cengiz and Yuret, 2020; Peinelt et al., 2020;
Wang et al., 2019b; Kapanipathi et al., 2020) and
examining whether the model has learned human-
like competence (Goldberg, 2019; Liu et al., 2019a;
Hewitt and Manning, 2019; Clark et al., 2019; Lin
et al., 2019; Tenney et al., 2019; Warstadt and Bow-
man, 2020; Manning et al., 2020; Ettinger, 2020;
Michael et al., 2020). We propose to improve Sem-
BERT (Zhang et al., 2019b) by predicate-wise con-
catenation of SRL representations with BERT rep-
resentations followed with interaction, and analyze
whether the infused SRL information increased the
model’s performance and linguistic awareness.

7 Conclusion

We conduct experiments to analyze whether in-
corporating SRL representations into BERT repre-
sentations by concatenation can improve the mod-
els’ performance on the NLI task, and help the
models learn linguistic knowledge and human-like
generalizations. In addition, we propose predicate-
wise concatenation with interaction for combining
SRL embeddings and BERT representations, which
turns out to be more effective than the sentence-
wise concatenation adopted in SemBERT. Through
experiments, we observe that infusing SRL repre-
sentations with BERT representations improves the
model generalization on lexical and world knowl-
edge, as evident from the consistently better perfor-
mance of LingBERT on the Breaking NLI dataset.
Performance improvement on HANS lexical over-
lap heuristic examples when the model is fine-tuned
on SNLI further strengthens our claim. However,
we do not observe any semantic-aware model fined-
tuned on MNLI outperform BERT on the HANS
dataset. This indicates that incorporating linguis-
tic knowledge explicitly encoded by predicate-
argument structures by just concatenating SRL rep-
resentations with BERT representations does not
increase the model’s awareness of other linguistic
knowledge and competence of reasoning general-
ization. Therefore, how to effectively infuse SRL
information to improve the model’s awareness of
other linguistic phenomena remains an open chal-
lenge. With the current model, the extra explicit
SRL information does not necessarily reduce the
model’s vulnerability to heuristics, and its perfor-
mance is influenced by the training data.
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A Detailed results on HANS dataset

train on SNLI train on MNLI

all heuristics all heuristics
entail non-entail overall entail non-entail overall

BERT 98.85 18.81 58.83 98.15 34.24 66.19
SemBERT 99.40 16.38 57.89 99.30 7.59 53.44
Ours 99.45 20.48 59.96 98.41 18.75 58.58

lexical overlap heuristic lexical overlap heuristic
entail non-entail overall entail non-entail overall

BERT 97.35 46.33 71.84 95.20 64.77 79.98
SemBERT 98.61 43.02 70.82 98.51 14.15 56.33
Ours 98.42 54.40 76.41 96.34 41.01 68.68

subsequence heuristic subsequence heuristic
entail non-entail overall entail non-entail overall

BERT 99.67 4.92 52.29 99.44 14.27 56.85
SemBERT 99.67 3.69 51.68 99.98 2.05 51.01
Ours 99.96 4.01 51.99 99.85 5.17 52.51

constituent heuristic constituent heuristic
entail non-entail overall entail non-entail overall

BERT 99.53 5.20 52.36 99.81 23.69 61.75
SemBERT 99.90 2.44 51.17 99.43 6.56 52.99
Ours 99.96 3.03 51.49 99.03 10.07 54.55

Table 6: Performance on HANS. entail columns are where the ground-truth label is entailment, non-entail columns
are where the ground-truth label is non-entailment, and overall columns are for both ground-truth labels together.


