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Abstract

The semantics of relations are crucial for com-
prehending and analyzing multi-relational data.
Polysemous relations between different types
of entities (i.e. those that represent multiple
semantics) are common in real-world relational
datasets represented by knowledge graphs. For
numerous use cases, such as entity type clas-
sification, question answering and knowledge
graph completion, the correct semantic inter-
pretation of these relations is necessary. In this
work, we provide a method for discovering the
different semantics associated with abstract re-
lations and deriving many sub-relations with
fine-grained meaning. To do this, we leverage
the types of the entities associated with the re-
lations and cluster the vector representations of
entities and relations. The suggested method
automatically discovers the best number of sub-
relations for a polysemous relation and deter-
mine their semantic interpretation, according
to our empirical evaluation.

1 Introduction
Relations between different words or phrases

are important for the semantic understanding of
text. Popular knowledge graphs (KGs) such as
Yago (Mahdisoltani et al., 2014), NELL (Mitchell
et al., 2018) and DBpedia (Lehmann et al., 2015)
are formulated in terms of relational databases
where the entities are linked to each other with
different relations or predicates. In real-world tex-
tual data, the relations are often polysemous by
nature, i.e., they exhibit distinct meanings in differ-
ent contexts. For example, the relation ‘part of ’ has
different semantics in ‘..Sahara is part of Africa’
and ‘humans part of mammals’. Similar to the task
of word sense disambiguation, which is required to
understand different contextual meanings of words,
relation disambiguation is needed to interpret the
specific, contextual semantics of relations. Rela-
tion polysemy occurs frequently in open texts and
has been studied and discussed by previous works

on automatic relation extraction from texts (Min
et al., 2012; Galárraga et al., 2014; Han and Sun,
2016). Relation semantics are particularly impor-
tant in the context of knowledge graphs which are
widely used for systematic representation of data
in the form of ⟨subject, predicate, object⟩ triples.
Here, subject and object are chosen from a set of
entities, while the predicate that links the entities
to each other belongs to a set of relations. As the
triples in KGs are derived from real-world facts,
ambiguity from texts often makes it way into the
KG triples as well. Specifically, the relations may
represent multiple meanings depending on the con-
text, which in the case of KG triples, is defined
by the types of the entities being connected by the
relations. The underlying idea of defining the role
of words by their context is quite old in Linguistics,
advocated by Firth : ‘a word is characterized by
the company it keeps’ (Firth, 1957). In the context
of KGs, one could say ‘a relation is characterized
by the entity types it connects’.

In order to gauge the issue of multiple relation se-
mantics in popular KGs, we analysed the relations
in the Yago3 (Mahdisoltani et al., 2014) dataset in
terms of the number of unique entity types pairs
that were found in the associated triples. The re-
sults are plotted in Figure 1. It can be seen that
the majority of the relations have multiple entity
types associated with them. Among these, many
relations such as owns and created are generic in
their semantics and exhibit very high plurality of en-
tity types. Similar insights were also derived from
the NELL knowledge graph. Some examples of
the actual entity types associated with polysemous
relations from these KGs are shown in Table 1.

In this work we advocate that for such relations
that are associated with a number of different en-
tity type pairs, it would be prudent to instead split
them and create new sub-relations that have a more
distinct meaning according to the context. The ex-
act meanings of the sub-relations could be clearly



Figure 1: The type pairs associated with different rela-
tions in Yago.

defined based on the distinct types of the associ-
ated entities. However, this approach can be tricky
since entity types can vary widely. While some
types such as television and movie for the created
relation in Yago are semantically similar to one
another, other types are quite different, for instance
company and writer. If the relation is split based
on the different entity types in a straightforward
manner, without taking the similarity of these types
into account, the resultant sub-relations would end
up being semantically similar to each other. Due to
the complex hierarchy of classes (entity types)1 in
the underlying schema (or ontology), entity types
belong to different granularity levels (Jain et al.,
2021) leading to a wide range of semantic similar-
ity between them. It is, therefore, a non-trivial task
to decide how a relation should be split into sub-
relations based on the semantics of the entity types
associated with it, both in terms of the number of
sub-relations as well the subset of entity types that
the sub-relations should encompass.

In this work, we define the problem statement
of fine-grained relation refinement which refers
to the disambiguation of polysemous relations in
relational datasets and propose a data-driven and
scalable method named FineGReS (Fine-Grained
Relation Semantics) as a first solution towards the
same. The fine-grained semantics for the relations
are derived by relying on the multiple semantics
of the relations evident from the types of the asso-
ciated entities. The proposed approach leverages
knowledge graph embeddings, that provide rep-
resentations of the KG entities and relations in a
continuous vector space. We find optimal clusters
in the latent space to identify the underlying seman-
tic features such that polysemous relations can be

1the terms class and entity type will be used interchange-
ably in the paper from this point on

Table 1: Examples of Multiple Semantics of Relations.

Yago created NELL agentBelongsTo-
Organization

(writer, movie) (politician, politicalparty)
(player, movie) (country, sportsleague)
(artist, movie) (sportsteam, sportsleague)

(officeholder,movie) (coach—sportsleague)
(writer,fictional_character) (person, charactertrait)

(artist,computer_game) (televisionstation, company)
(artist,medium)

(writer,television)
(company,computer_game)

represented in terms of multiple sub-relations with
well-defined semantics. This approach automati-
cally determines not only the optimal number of
sub-relations (corresponding to the number of clus-
ters), but also the entity types that should be associ-
ated with each of them so as to have clearly defined
semantic representation. Experimental evaluation
performed on popular relational datasets reveals
the benefits of defining fine-grained semantics and
brings forth the efficacy of the proposed approach
in the face of the challenging nature of this task.

Contributions. 1. We formally define the task
of fine-grained relation refinement in relational
datasets and motivate its importance and benefits.
2. We propose the data-driven and scalable method
FineGReS to identify multiple sub-relations that
capture the different semantics of the relations via
clustering in the latent space. 3. We perform em-
pirical evaluation and illustrate the benefits of the
method on downstream applications, such as entity
classification.

2 Fine-Grained Relation Semantics
Relation polysemy is quite common in knowl-

edge graphs for two primary reasons. Firstly, the
schema for most large scale KGs that are in use to-
day have been constructed through manual or semi-
automated efforts, where the relations between the
entities are curated from text. Relations are often
abstracted in such KGs for simplification and avoid-
ance of redundancies. This may result in cases
where a single relation serves as a general notion be-
tween various different types of KG entities and has
more than one semantic meaning associated with it.
In addition to this, the fact that these KGs represent
real-world facts that are expressed in natural lan-
guage having inherent ambiguities, contributes fur-
ther to the relation polysemy in KGs. For instance,



the relation phrase ‘part of ’ represents varied se-
mantics based on its context of biology (finger part
of hand), organizations (Google part of Alphabet),
geography (Amazon part of South America) and
many others. Even KGs that have a large number
of different relations can suffer from ambiguous
relations. For instance, DBpedia has around 300
relations that are relatively well-defined in terms of
their entity types, and yet there exist relations such
as award and partOf that still convey ambiguity.
The determination of fine-grained relation seman-
tics in relational data is an important task which
can bring substantial benefits to a wide range of
NLP and semantic use cases as discussed further in
this section.

The task of relation extraction is essential for
information extraction from texts and it continues
to be challenging due to the varied semantics of
the evolving language. For identifying patterns and
extracting relation mentions from text, unsuper-
vised techniques typically rely on the predefined
types of relation arguments (Hasegawa et al., 2004;
Shinyama and Sekine, 2006; Chen et al., 2005).
Given an existing KG and schema, with the goal
to extract facts for a particular relation from a new
corpus of text, a distant supervision approach will
leverage relation patterns based on the types of en-
tities over the text. As an example, if the relation
created has been established between a painter and
artwork, then the identification of this relation can
be aided by specific patterns in text. However, if
the relation created is generically defined between
any person entity and any work entity, then the re-
sulting text patterns for this relation will be noisy
and varied, therefore may fail to identify the cor-
rect fact triples from text. Identifying the different
meanings of a relation in different contexts can
help with defining concrete patterns for extraction
of relation phrases.

This is also useful for identification and classi-
fication of entities by their types in a knowledge
graph. E.g. the target entity of the relation directed
is likely to be of type movie or play. If the relations
have a wider semantic range, the type of entities
cannot be identified at a fine-grained level. For in-
stance, it might be only possible to identify the en-
tity type as work and not specifically movie, which
could adversely affect the performance of further
applications such as entity linking and question
answering. Numerous question answering sys-
tems that use knowledge graphs as back-end data
repositories (KBQA) (Cui et al., 2019) rely on the

type information of the entities to narrow down
the search space for the correct answers. Thus,
distinct relation semantics in terms of the types of
connected entities are essential for supporting QA
applications over KGs.

We would like to emphasize that task of defin-
ing fine-grained relation semantics is important in
the context of KG refinement, not being merely
limited to already existing datasets but in general.
KGs usually evolve over time and often in a frag-
mented fashion, where new facts might be added
to a KG that do not strictly conform to or cannot
be correctly encapsulated by the existing ontol-
ogy. Addition of such new facts might easily lead
to noisy and abstracted semantics in previously
well-defined KG relations. Relation disambigua-
tion would therefore play a important role in iden-
tifying new fine-grained sub-relations with precise
semantics. The proposed FineGReS method is gen-
erally applicable and could prove to be incredibly
useful in all the above scenarios.

In the next section, we provide the necessary
background and present the problem statement.

3 Preliminaries
Knowledge Graph. For a knowledge graph G,
the set of unique relations is denoted as R. A KG
fact (or triple) F = ⟨eh, r, et⟩ consists of the head
entity eh, the tail entity et and the relation r that
connects them, where eh and et belong to the set
of entities E . Any given relation r ∈ R appears in
several triples, forming a subset Gr of G.

Entity Types. The semantic types or classes of
the entities are defined in an ontology associated
with a KG that defines its schema. The entities e
∈ E are connected with their types by ontological
triples such as ⟨e, typeOf, t⟩, where t ∈ T , the set
of entity types in the ontology.

We define a type pair as the tuple ⟨th, tt⟩ where
⟨eh, typeOf, th⟩ and ⟨et, typeOf, tt⟩. A set of
unique type pairs (for a given relation r and corre-
sponding Gr is denoted as Pr. Thus we have, Pr =
{⟨th, tt⟩|⟨eh, typeOf, th⟩, ⟨et, typeOf, tt⟩, ⟨eh, r, et⟩ ∈
Gr}. The total number of such unique type pairs
for relation r, i.e. |Pr| is denoted by Lr.

KG Embeddings. Knowledge graph embed-
dings have gained immense popularity and success
for representation learning of relational data. They
provide an efficient way to capture latent seman-
tics of the entities and relations in KGs. The main
advantage of these techniques is that they enable



easy manipulation of KG components when rep-
resented as vectors in low dimensional space. For
example in TransE (Bordes et al., 2013), for a triple
⟨h, r, t⟩ the vectors h, r and t satisfy the relation
h + r = t or r = t - h. In this work, we leverage
the representational abilities of the embeddings to
obtain the semantic vectors for relations expressed
in terms of the entities associated with them. For
vectors h, r and t as obtained from an embedding
corresponding to a KG triple ⟨eh, r, et⟩, we define a
vector ∆ri which is a function of ti and hi. Every
∆ri vector is mapped to a type pair Pri as per the
entities eh, et that they are both derived from.

Problem Definition. Given a relation r ∈ R in
G, the set of ∆r vectors and the corresponding
set of type pairs Pr, the goal is to find for this
relation an optimal configuration of clusters Copt =
{C1, C2...CN}, where the ∆ri vectors are uniquely
distributed among the clusters i.e. each ∆ri ∈ Cj ,
i = 1...|Gr|, j = 1...N , s.t. an objective function
F(Copt) is maximized.

Further, each cluster Cj represents the semantic
union of the subset of type pairs Pr where ∃∆ri ∈
Cj s.t. ∆ri is mapped to one of the type pairs in Pr.
Thus, the optimal configuration of clusters corre-
sponds to the optimal number of sub-relations and
their fine-grained semantics as defined by the type
pairs that they represent. The proposed FineGReS
method can derive this optimal configuration for
the relations of a KG.

4 Method
In this section, we describe in detail the de-

sign and implementation details of the proposed
FineGReS method for a relation that can easily
scaled to any number of relations in the datset.

4.1 Semantic Mapping for Facts
For every unique relation r in G, we firstly find

the subset of facts Gr where r appears. To un-
derstand the semantics of the entities associated
with r, the entities are mapped to their correspond-
ing classes as defined in the underlying ontology.
By doing so, we obtain a list of entity type pairs
⟨th, tt⟩ for the relation. Note that several entities
in Gr might map to the same type and therefore,
a single type pair tuple would be obtained several
times. Therefore in the next step, we identify the
unique type pairs for a relation r as the set P . At
this stage, every fact in Gr is associated with a type
pair ⟨th, tt⟩ ∈ P that represents the semantics of
this fact. For example, for the created relation, a

Figure 2: Visualization of vectors for agentcontrols
relation in NELL with associated type pairs.

triple ⟨DaV inci, created,MonaLisa⟩ would be
mapped to ⟨artist, painting⟩ as per the types of
the head and tail entities.

4.2 Vector Representations for Relations
For representing the semantics of r in terms of

the associated entities, we leverage pre-trained KG
embeddings. As proposed in previous work (Jiang
et al., 2020), we obtain a representation for r from
h and t corresponding to every fact in Gr and denote
this vector as ∆r. In this way, for every relation
r, a set of ∆r vectors is obtained from the KG
embeddings, in addition to the actual r vector that
the embedding already provides. These ∆r vectors
are already mapped to the unique type pairs Pi ∈ P
for the relation r (according to the fact triples they
were calculated from)2, such that each unique type
pair is represented by a set of ∆r vectors. These
∆r vectors encode the information conveyed by
both the head and tail entity types together and rep-
resent the relationship between the entities, they
therefore represent the latent semantics of the re-
lations in different facts. The ∆r vectors become
our data points (with the associated type pairs Pi

serving as their labels).

Relation Semantics. While it is believed that
KG embeddings are able to capture relation simi-
larity in the embedding space, i.e., relations hav-
ing similar semantics occur close together in the
vector space (Do et al., 2018; Kalo et al., 2019),
we found that relations having multiple semantics
(based on the context of their entities) are, in fact,
not represented well in the vector space. In fact,

2we denote Pr as P when the relation r is clear from the
context



for polysemous relations, the vectors obtained for
a single relation (from the different facts that it ap-
pears in) form separate clusters in the vector space
that do not overlap with the actual relation vector r
obtained from the embeddings. This happens due
to the fact that multiple entity pairs connected by
the same relation are semantically different from
one another. Figures 2 illustrates an example from
the NELL dataset where this behaviour of the em-
bedding vectors for relations is clearly visible. We
leverage this semantically-aware behaviour of the
embedding vectors to determine meaningful clus-
ters of ∆r vectors that represent the distinct latent
semantics exhibited by different entity type pairs
connected by the same relation, as described next.

4.3 Clustering for Fine-grained Semantics
For each relation r, the total number of unique

type pairs L = |Pr| is theoretically the maximum
number of possible semantic sub-relations or clus-
ters that could be obtained for r. This is the
maximal splitting that will assign a different sub-
relation for every different type pair. However,
in practice, it is rare that all the type pairs would
have completely different semantics. For exam-
ple, the created relation in Yago has type pairs
⟨artist, painting⟩ and ⟨artist,music⟩ that have
the same head entity type, while the type pair
⟨organization, software⟩ conveys quite a differ-
ent meaning. While a single relation is not suffi-
cient to be representative of the semantics of all
facts which is it appears in, at the same time, a
naive maximal splitting of the relation as per the
unique type pairs would also be inefficient and lead
to a large number of unnecessary sub-relations.

The FineGReS method aims to find an optimal
number and composition of clusters Copt for the
type pairs that can convey distinct semantics of
the relations based on the data, by combining simi-
lar type pairs while separating the dissimilar ones.
Each of the clusters having one or more than one se-
mantically similar type pairs represents a potential
sub-relation. In order to obtain this configuration,
various compositions of the clusters need to be
analysed for optimality. Clustering is performed
in an iterative manner with a predefined number
of clusters and combinations of type pairs within
each cluster. Since it is not feasible or practical
to consider all possible clusters of the type pairs,
FineGReS leverages the semantic similarity of type
pairs to narrow down the search space for obtain-
ing the optimal clusters. For this, the similarity

scores between all combinations of the unique type
pairs (thi

, tti), (thj
, ttj ) are calculated. First, the

vector representations for the types are obtained.
Subsequently, the similarity scores are obtained by
calculating the similarity scores between the vec-
tors corresponding to thi

and thj
as well as tti and

ttj and then taking their mean value.

Iterative Clustering. The clustering begins with
L clusters, with each cluster corresponding to one
type pair for the relation. The cluster labels are
regarded as type pairs themselves. Following this,
the similarity scores of the type pairs are calculated,
and the ones with the highest similarity are consid-
ered as candidate pairs to be merged together and
placed in a single cluster. To generate the ‘ground
truth’, the data points (∆r vectors) corresponding
to both type pairs are assigned the same distinct
label and this dataset is separately used for evalu-
ating the cluster at every iteration. The number of
clusters is given as L - 1 during the next iteration
of clustering, and the cluster labels consist of L - 2
original type pairs and one merged type pair. If two
combinations of type pairs have the same similarity
score in any iteration, ties are broken arbitrarily.
This process of selecting the most similar pair of
class combinations for lowering the number of clus-
ters and obtaining cluster labels as ground truth is
repeated until all type pairs have been gradually
merged back together in a single cluster. For each
iteration, the quality of the clusters is evaluated and
compared to the engineered ground truth, and the
best performing cluster configuration is chosen as
the optimal set of clusters Copt that best represent
the sub-relations with fine-grained semantics3.

5 Experimental Analysis
To evaluate the performance of the FineGReS,

we performed intrinsic empirical analysis in terms
of the quality of the optimal clusters as obtained
from the method. Further, to show the performance
gains from FineGReS for a relevant use case, we
performed extrinsic evaluation for the task of entity
classification.

Datasets. We prepared datasets derived from
Yago3 and NELL-995 knowledge graphs for rela-
tion analysis and disambiguation in this work. The

3It is to be noted that the labeling of newly proposed sub-
relations is a separate task on its own. In this work, we merely
utilize names of entity types to derive basic labels, however
a proper naming scheme for these relations is a complex task
in the context of ontology design and out of the scope of the
current work.



Table 2: Quality of FineGReS clusters (CFGReS) in comparison with baselines.

Yago NELL

Clustering
Technique

Cmax Chead Ctail CFGReS Cmax Chead Ctail CFGReS

TransE

KMC .245 .199 .190 .269 .384 .304 .318 .463
OPC .456 .506 422 .524 .192 .197 .203 .258
SPC .040 .027 .012 .031 .332 .185 .190 .337
HAC .217 .195 .182 .254 .335 .245 .293 .374

DistMult

KMC .186 .101 .166 .183 .348 .212 .298 .369
OPC .430 .424 .423 .451 .342 340 .349 .370
SPC .316 .469 .031 .332 .287 .163 .196 .307
HAC .212 .208 .176 .237 .283 .173 .227 .292

Yago dataset consists of 1,492,078 triples, with 31
relations and 917,325 unique entities. The NELL
dataset includes 154,213 triples, with 200 relations
and 75,492 unique entities. For both, the entities
were augmented with their types as derived from
the respective ontologies of the KGs.

Vectors for Entity Types. In order to ob-
tain word vector representations of the class
types, we use the pre-trained ConVec embed-
dings (Ehsan Sherkat, 2017). We also leveraged the
pre-trained Sentence-BERT (Reimers et al., 2019)
models from the HuggingFace library (Wolf et al.,
2019). Cosine similarity measure was used for
calculating the vector similarities (Euclidean simi-
larity measure provided very similar results).

Knowledge Graph Embeddings. We perform
our experiments on the following widely used KG
embedding models : TransE (Bordes et al., 2013)
and DistMult (Yang et al., 2014). These mod-
els are chosen to serve as prominent examples
of embeddings using translation distance and se-
mantic matching techniques respectively. We use
the model implementations from the LibKGE li-
brary (Broscheit et al., 2020) for the Yago3-10
dataset and from OpenKE library (Han et al., 2018)
for the NELL-995 dataset. It is important to
note that in this work, we have purposefully cho-
sen those embedding techniques that showed the
promise of being able to differentiate the multiple
semantics of a relation. Indeed there have been
some embedding models (Xiao et al., 2016) that in-
stead aim to encapsulate the different semantics of
the relation in a single representative vector, how-
ever such techniques are not fruitful towards our
goal of fine-grained relation refinement.

Baselines. We establish several baselines to eval-
uate and compare the performance of the optimal

clusters (hence the corresponding sub-relations) de-
rived from FineGReS to naive approaches in each
experimental setting.
max - Sub-relations are obtained on the basis of
every different type pair that is found associated
with a relation, this naive setting corresponds to the
maximum number of clusters.
head - Sub-relations represent all type pairs associ-
ated with a common head entity and different tail
entities. It is equivalent to grouping the type pairs
in the max setting by head entity types.
tail - Similar to head, just replacing head entity
with tail entity instead so that sub-relations repre-
sent all type pairs associated with a common tail
entity and different head entities.

Clustering Techniques. To explore the affect
of different techniques during the clustering step
of FineGReS method, we employed several algo-
rithms : KMeans clustering(KMC), Spectral (SPC),
Optics (OPC) and Hierarchical Agglomerative clus-
tering(HAC).

5.1 Cluster Quality Evaluation
The quality of the clusters, and thereby, the re-

sultant sub-relations is measured in terms of ho-
mogeneity score (Jain et al., 2018), this metric fa-
vors a clustering scheme where every cluster rep-
resents a unique dominant label that corresponds
to one or more unique type pairs in our case. Thus,
this metric best represents the distinct semantics of
the clusters. We measure and report the weighted
(as per the number of data points) homogeneity
scores for the clusters of all relations in the dif-
ferent settings of KG embeddings and clustering
techniques in Table 2. It can be seen that in most
cases the CFGReS clusters obtained by the proposed
FineGReS method obtain higher scores than all the
other baselines that were considered for defining



Table 3: Examples of Fine-grained Sub-relations.

Dataset - Relation
(setting)

FineGReS Sub-relations

Yago - owns
(TransE-HAC)

{⟨company, airport⟩ ⟨organization, airport⟩}, {⟨sovereign, building⟩},
{⟨company, club⟩ ⟨company, company⟩, ⟨country, club⟩ }

Yago - created
(TransE-OPC)

{⟨artist,medium⟩ ⟨officeholder,movie⟩}, {⟨writer, fictional_character⟩},
{⟨writer,movie⟩ ⟨writer, television⟩ ⟨writer, fictional_character⟩ ⟨artist,movie⟩

⟨artist, computer_game⟩ ⟨player,movie⟩}, {⟨company, computer_game⟩}

NELL-agentCompetesWith
(TransE-Kmeans)

{⟨company, person⟩ ⟨website, person⟩ ⟨person, person⟩, ⟨sportsteam, sportsteam⟩},
{⟨person, company⟩, ⟨person,website⟩} {⟨animal, animal⟩, ⟨bird, animal⟩},

{⟨bank, bank⟩}, {⟨mammal, politicsissue⟩}

NELL-subpartOfOrganization
(DistMult-Kmeans)

{⟨sportsteam, sportsteam⟩ ⟨stateorprovince, sportsteam⟩ ⟨university, sportsteam⟩
⟨city, sportsteam⟩ }, {⟨organization, organization⟩}, {⟨televisionstation, city⟩},

{⟨company, company⟩ ⟨televisionstation, company⟩}, {⟨sportsteam, sportsleague⟩},
{⟨bank, bank⟩} {⟨televisionstation, televisionnetwork⟩}, {⟨televisionstation, website⟩}

Table 4: Performance Comparison for Entity Classifica-
tion Task for Yago (r refers to original relations).

FineGReS
r max head tail TransE DistMult

Precision .893 .916 .906 .322 .923 .928
Recall .908 .925 .921 .425 .941 .942
F1 score .894 .914 .909 .34 .931 .931

the cluster configurations for sub-relations. This
indicates the efficacy of the method for finding
optimal fine-grained sub-relations.

Discussion. Table 3 shows a few representa-
tive examples of the sub-relations obtained by
FineGReS in different settings for Yago and NELL.
It can be seen that semantically different entity type
pairs have been clearly separated out as distinct sub-
relations, e.g. the ⟨sovereign, building⟩ pair for
owns relation where sovereign is semantically dis-
tant from other types or agentCompetesWith where
⟨bank, bank⟩ is a separate sub-relation. Other sub-
relations have multiple type pairs associated with
them based on their semantic proximity. Note that
in a few cases, the optimal configuration could in-
deed be the max or head/tail setting for the relation
depending on the associated type pairs. The Fine-
GReS method is able to automatically determine
this optimal configurations of the sub-relations for
each relation relying solely on the facts in the
dataset and the associated type information.

5.2 Entity Classification Use Case
In order to empirically evaluate the FineGReS

method in terms of the usefulness of the derived
sub-relations, we consider the popular use case of
entity classification which is an important task for
KG completion (Neelakantan and Chang, 2015). It
is modeled as a supervised multi-label classifica-

tion task, where the entities are assigned to their
respective types. Previous works have performed
type prediction for entities in KGs based on statis-
tical features (Paulheim and Bizer, 2013), textual
information (Kliegr and Zamazal, 2016) as well
as embeddings (Biswas et al., 2020). Taking cue
from the same, we built a CNN classifier (Zhang
and Wallace, 2017) for the multi-label classifica-
tion task which can jointly classify both the entities
in a given triple to their respective types.

The dataset for the classification task was ob-
tained by replacing the original polysemous rela-
tions in the KG dataset with their corresponding
fine-grained sub-relations in the affected triples,
obtained from the best performing setting of the
FineGReS method as well as from the baseline tech-
niques described in Section 5. The performance
of entity classification was measured in terms of
weighted precision, recall and F1 scores (averaged
over 10 runs). The results for the Yago dataset are
shown in Table 4 (similar results were obtained for
NELL). It can be seen that with well-defined rela-
tion semantics, the performance of the entity clas-
sification task improved considerably. In particular,
the gains seen over the max setting are indicative of
the superiority of the FineGReS method in terms of
not merely finding any set of sub-relations but find-
ing the optimal configuration of the sub-relations
that best represent fine-grained semantics for all
relations.

6 RELATED WORK
There is a large body of work in linguistics that

deals with multiple semantics of words (Erk and
Padó, 2008; Reisinger and Mooney, 2010; Nee-
lakantan et al., 2014). Early work on the semantic
connections between the relations and their associ-



ated entities in texts was introduced in 1963 (Katz
and Fodor, 1963) with the concept of selectional
preference for performing predicate or verb sense
disambiguation (Resnik, 1997). The idea advo-
cates that verbs can semantically restrict the types
of the arguments that occur around them, thus hav-
ing a preference for certain classes of entities. In
contrast, our work in this paper focuses on the
predicates that are generic and have insufficient
constraints for their entity types. In such cases,
the diverse entity types were, in fact, leveraged
to identify and define the fine-grained semantics
of these predicates by dividing them into multiple
predicates.

In other work related to relation semantics,
(Jiang et al., 2020) explores the entailment between
relations, e.g. the relation creator entails author or
developer in the sense that creator subsumes the
other relations. Similar to our work, the authors
leverage the entity type information to solve the
multi-classification problem of assigning the child
relations to the parent ones. Our problem statement
of fine-grained relation refinement is significantly
more challenging and impactful in the sense that it
involves the identification of novel sub-relations in
an unsupervised manner.

While the idea of learning better embeddings
for words by considering their multiple contextual
semantics is not new (Vu and Parker, 2016), the
semantics of relations have also been recently stud-
ied in regards to learning knowledge graph embed-
dings. In (Lin et al., 2015) the authors advocated
the need for learning multiple relation vectors to
capture the fine-grained semantics, however this
study was limited in scope and lacked any consid-
eration for complex entity type hierarchies in KGs.
In (Zhang et al., 2018), the authors create a 3-level
relation hierarchy which combines similar relations
as well splits relations into sub-relations, in order
to improve the embeddings for relations. The pro-
posed approach is quite rigid and opaque in terms
of the actual semantics of the relations obtained
from it. In fact, the number of clusters was prede-
fined for all relations across a dataset, in contrast to
the FineGReS method that can determine an opti-
mal number of clusters separately for each relation
based on the associated entity types.

The diverse semantics of relations was also con-
sidered by (Ji et al., 2015) where the authors pro-
posed two different vectors for the relations as well
as entities, to capture their meanings and connec-
tions with each other. Similarly, in (Xiao et al.,

2016) the authors discussed the generation of mul-
tiple translation components of relations based on
their semantics with the help of a bayesian non-
parametric infinite mixture model. However, they
do not perform a systematic analysis of the rela-
tions semantics and a qualitative evaluation of their
approach is missing.

In general, the above discussed works have lever-
aged relation polysemy for designing better embed-
ding models and improving their link prediction
performance on knowledge graphs. In this work,
we instead approach the problem of relation pol-
ysemy and discovery of the latent relation seman-
tics with the goal of knowledge graph refinement
and improvement of the quality of the relations in
underlying ontology. More importantly, none of
the previous works have explored the challenges
of deriving fine-grained relations from an existing
polysemous relation in the presence of complex
semantic relationships between the associated en-
tity types, which is quite common for real-world
datasets. Our proposed FineGReS method performs
this task in a systematic and data-driven fashion
and shows promising benefits for downstream ap-
plications.

7 Conclusion
In this paper, we have studied the need for re-

lation disambiguation for knowledge graphs due
to the inherent relation polysemy in these datasets.
We have proposed a scalable, data-driven method
FineGReS that automatically determines an optimal
configuration for deriving sub-relations with con-
crete semantics. Empirical evaluation has demon-
strated the efficacy of the method for learning
fine-grained relation semantics for real-world data.
The performance improvement achieved for down-
stream application of entity classification strongly
indicates the promise of this approach. Since the
method relies on the type information of the enti-
ties, FineGReS can currently be applied only to the
KGs accompanied by their ontologies. It would
be interesting to extend the proposed approach to
derive entity semantics from other sources, such
as text. As future work, we also plan to perform
a systematic analysis of the utility and impact of
this method on further NLP tasks, such as relation
extraction and question answering over KGs.
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